matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeKern einer Matrix bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Kern einer Matrix bestimmen
Kern einer Matrix bestimmen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern einer Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Mo 10.09.2012
Autor: dudu93

Hallo! Ich habe eine Frage.

Und zwar geht es darum, den Kern einer Matrix zu bestimmen. Ich habe gelernt, dass man den kern bekommt, in dem man Ax = 0 setzt.

Und dann die jeweiligen Variablen bestimmt und folglich den Vektor mit "span" angibt.

Nun habe ich in einer Musterlösung allerdings gesehen, dass dort der Kern einfach abgelesen wurde. Nämlich nachdem man die Lösungsmenge Ax = b gelöst hat.

Zum Beispiel:

[mm] \begin{pmatrix} -0,5 \\ -2 \\ 1 \\ 0 \end{pmatrix} [/mm] + [mm] t\begin{pmatrix} -1/4 \\ 7/2 \\ -1/2 \\ 1 \end{pmatrix} [/mm]

Laut Musterlösung wäre es:

Kern A = span [mm] \begin{pmatrix} -1/4 \\ 7/2 \\ -1/2 \\ 1 \end{pmatrix} [/mm]

Wenn ich die erste Variante durchführe, kommt etwas anderes raus, was aber komischerweise vom Korrekteur als richtig bewertet wurde.

Was ist denn nun richtig? LG




        
Bezug
Kern einer Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mo 10.09.2012
Autor: Schadowmaster

moin,

Nehmen wir mal an du hast das LGS
$Ax = b$ und hast als Lösung $x= a + t*v$ für zwei Vektoren $a,v$ und eine beliebige Zahl $t$, also so wie in deinem Fall.
Dann gilt:
$b= A(a+tv) = Aa + tAv$
Da du aber auch insbesondere für $t=0$ eine Lösung hast erhältst du $Aa + tAv = b = Aa$ und damit $tAv = 0$, also $tv [mm] \in$ [/mm] Kern$(A)$.
Hast du also deine Lösungen für ein LGS in der Form $x=a+tv$ oder allgemeiner $x=a+u$ für $u$ aus einem geeigneten Unterraum $U$ (etwa auch einer, der von zwei, drei oder wie vielen Vektoren auch immer aufgespannt wird) so ist damit $U [mm] \subseteq$ [/mm] Kern$(A)$ gezeigt.
Du musst jetzt also für die gewünschte Gleichheit noch [mm] $\supseteq$ [/mm] zeigen, das ist aber auch nicht all zu schwer.

lg

Schadow

Bezug
                
Bezug
Kern einer Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:50 Mo 10.09.2012
Autor: dudu93

Danke für die Antwort!
So wie ich es gemacht habe (Ax=0), ist es aber auch nicht falsch, oder?

LG

Bezug
                        
Bezug
Kern einer Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:08 Di 11.09.2012
Autor: leduart

Hallo
nein dein Weg ist richtig. wahrscheinlich hast du nur ein Vielfaches des anderen vektors raus und das nicht gesehen,
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]