Kern,Bild von Primzahl,Polynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:14 So 18.12.2005 | Autor: | Kiki3000 |
Aufgabe | a) Es sei [mm] $V=\{p(x) \in \IR[X]\ |\ \mathrm{deg}(p(X)) \le n\}$ [/mm] der Vektorraum aller reellen Polynome vom Grad kleiner gleich $n$. Sei $f: V [mm] \to [/mm] V$ die Differentiation. Bestimmen Sie Basen für den Kern und das Bild von $f$.
b) Sei $p$ eine Primzahl und $f: [mm] F_{p}^{n} \to F_{p}$, $\vektor{x_1 \\ \vdots \\ x_n} \mapsto x_1 [/mm] + [mm] x_2$. [/mm] Bestimmen Sie wiederum Basen für Kern und Bild, sowie die Ordnungen [mm] $|\mathrm{ker}(f)|$ [/mm] und [mm] $|\mathrm{im}(f)|$. [/mm] |
Hallo!!
Mir ist ja eigentlich klar, dass ker(f)={v [mm] \in [/mm] V | f(v)=0} und im(f)={f(v) | v [mm] \in [/mm] V}. Aber wie ich bei Polynomen und Primzahlen vorgehe, weiß ich mal gar nicht. Außerdem: was sind Ordnungen?
Wäre lieb, wenn ihr mir helfen könntet mit Lösungsansätzen und auch Erklärungen zu Kern, Bild, Polynomen...
Vielen Dank schonmal!!
Bis dann
Kiki
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:12 So 18.12.2005 | Autor: | SEcki |
> Mir ist ja eigentlich klar, dass [mm]ker(f)=\{v\in V | f(v)=0\} [/mm]
> und [mm]im(f)=\{f(v) | v \in V\}[/mm]. Aber wie ich bei Polynomen und
> Primzahlen vorgehe, weiß ich mal gar nicht. Außerdem: was
> sind Ordnungen?
Du sollst Basen für den Kern und das Bildangeben - die normale Basisi für den Raum sind die Polynome [m]X^0,X^1,...,X^n[/m], klar so weit? Jetzt überlege dir doch mal: für welche Polynome (Funktionen) gilt denn [m]p'=0[/m]? also was ist der Kern? Was ist die Ableitung von einem Polynom? Was also eine Basis des Bildes? Genauso bei der zweiten Aufgabe, hier kann man das gnaze in eine Matrix umschreiben und nach Schema F (Gauss) eine Basis vom Kern bestimmen. Zum Bild: das kann ja aus Dimensionsgründne ja nur der ganze Raum oder der Nullraum sein, was ist es hier? Ordnung heisst einfach die Anzahl der Elemente (nicht die Dimension) in der Menge.
SEcki
|
|
|
|