matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKern / Bild / Basis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Kern / Bild / Basis
Kern / Bild / Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern / Bild / Basis: Basisbestimmung v Kern / Bild
Status: (Frage) beantwortet Status 
Datum: 21:48 Mi 05.07.2006
Autor: Albinisi

Aufgabe
Die lineare Abbildung [mm] \varphi: \IR^{3} \to \IR^{3} [/mm] sei definiert durch [mm] \varphi [/mm]  ( [mm] \vektor{x \\ y \\ z}) [/mm] = [mm] \vektor{2x - y + z \\ x + \alpha z \\ y + z}, \alpha \in \IR. [/mm] Bestimmen Sie in Abhängigkeit von [mm] \alpha [/mm] jeweils eine Basis von Kern [mm] \varphi [/mm] und Bild [mm] \varphi. [/mm]

Hallo,

bin gerade in meiner hausgemachten Verwirrung gefangen. Ich hoffe ihr könnt mir weiterhelfen.

Also wenn ich das richtig sehe ist der Kern für [mm] \alpha [/mm] = 1:  [mm] \vektor{1 \\ 1 \\ -1} [/mm] und für [mm] \alpha \not= [/mm] 1: Nullvektor.

Ist das Bild [mm] \pmat{ 2 & -1 & 1 \\ 1 & 0 & \alpha \\ 0 & 1 & 1} [/mm] ?

Sehr optimistisch angenommen es stimmt, wie muss ich dann weitermachen?

Schon mal Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kern / Bild / Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Mi 05.07.2006
Autor: Jan_Z

Hallo,
das Bild ist nicht die Matrix, die du hingeschrieben hast, sondern der Unterraum, der von ihren Spalten erzeugt wird. Um eine Basis vom Bild zu bekommen, musst du also diese Spaltenvektoren linear kombinieren, bist du siehst, welche "wegfallen".
Viele Grüße,
Jan

Bezug
                
Bezug
Kern / Bild / Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:48 Do 06.07.2006
Autor: Albinisi

Alles klar.

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]