matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesKegel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Kegel
Kegel < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kegel: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:37 Mi 17.11.2004
Autor: cremchen

Hallo zusammen!

Ich bins nochmal!
Ich hab da noch eine Aufgabe, die eigentlich gar nicht soo schwer zu sein scheint, aber ich finde dort einfach keine Lösung!

Die Aufgabe lautet:
Eine Menge [mm] {\cal K} [/mm] heißt Kegel, wenn mit [mm] x\in{\cal K} [/mm] auch [mm] {\alpha}x\in{\cal K} [/mm] für jede Zahl [mm] \alpha\ge0. [/mm]
a) Beweisen oder widerlegen Sie: Jeder Kegel ist konvex.
b) Zeigen Sie: ein polyedrischer Kegel der Form [mm] {\cal K}={x\in\IR^{n}:Ax\le0} [/mm] (mit [mm] A\in\IR^{mxn}) [/mm] hat höchstens einen Extrempunkt, nämlich den Ursprung!

Also zu a)
Also zuerst hab ich mir überlegt, dass Kegel im [mm] \IR^{2} [/mm] bzw. [mm] \IR^{3} [/mm] so wie ich sie mir vorstelle, konvex sind! Die Frage ansich klingt allerdings so als würde es ein Gegenbeispiel geben, aber da finde ich keins!
Und wenn ich davon ausgehe, dass es doch stimmt, dann komm ich nicht besonders weit:
für [mm] x_{1},x_{2}\in{\cal K} [/mm] gilt zunächst auch [mm] {\alpha}x_{1},{\alpha}x_{2}\in{\cal K} [/mm]
Zu zeigen wär dass auch [mm] {\lambda}x_{1}+(1-\lambda)x_{2}\in{\cal K} [/mm]

Ich hab schon für so viele Mengen gezeigt dass sie konvex sind aber hier find ich den nächsten Schritt einfach nicht.......

zu b)
Hier hab ich absolut keinen formellen Ansatz!
Ich habe mir zunächst nur überlegt dass es stimmen muß, denn stellt man sich das ganz einfach als Kegel, wie man ihn normal kennt vor, so wär dieser umgekippt, also nach unten geöffnet und die Spitze läge als "höchster" Punkt im Ursprung!

Nur wie ich das zeigen soll..... keine Ahnung!

Ich wär echt dankbar für ein paar gute Tipps!!!

Liebe Grüße und schonmal vielen Dank
Ulrike

        
Bezug
Kegel: Gegenbeispiel
Status: (Antwort) fertig Status 
Datum: 14:44 Mi 17.11.2004
Autor: Gnometech

Hallo Ulrike!

Also zu a) habe ich ein Gegenbeispiel...

Ich betrachte im [mm] $\IR^2$ [/mm] die Vereinigung der Achsenkreuze, also $K = [mm] \{ (x,y) \in \IR^2 : x = 0 \vee y = 0 \}$ [/mm]

Das ist offensichtlich ein Kegel - denn für $(x,y) [mm] \in [/mm] K$ ist auch [mm] $(\alpha [/mm] x, [mm] \alpha [/mm] y) [mm] \in [/mm] K$, da die Bedingung weiterhin erfüllt ist und zwar für jedes [mm] $\alpha \in \IR$... [/mm] aber $K$ ist offenbar nicht konvex (Die Verbindung zwischen $(0,1)$ und $(1,0)$ enthält ja z.B. [mm] $(\frac{1}{2},\frac{1}{2}) \notin [/mm] K$).

Zu b) kann ich leider nicht viel sagen - ich habe lineare Optimierung nie gehört... das überlasse ich anderen. :-)

Lars


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]