matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesKatze jagt Maus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Katze jagt Maus
Katze jagt Maus < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Katze jagt Maus: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 18:57 Di 09.12.2008
Autor: Teufel

Hi, Leute!

Ich zerbreche mir hierüber schon länger den Kopf:
Es startet eine Maus bei M(0|0) und rennt geradewegs nach rechts (die x-Achse entlang) mit einer konstanten Geschwindigkeit.
Bei K(0|10) startet eine Katze, die zu jedem Zeitpunkt zur Maus rennt (mit einer höheren Geschwindigkeit, sonst würde sie die Maus ja nie kriegen).

Die Aufgabe habe ich nur mal irgendwo gelesen und auch etwas anders wiedergegeben, aber das Prinzip ist das selbe.
Ich suche jetzt die Ortskurve der Katze sozusagen.

Von der bloßen Optik her, müsste es wie eine Art Parabel aussehen, also z.B. die Gleichung [mm] f(x)=10-a*\wurzel{x} [/mm] haben, was aber sicher nicht stimmt (wobei sich dann mit a bestimmen lässt, wo die Maus z.B. gefangen wird).

Mann kann sich den Sachverhalt natürlich auch gerne drehen und die Maus nach oben laufen lassen. Dann würde die Kurve wohl ca. wie g(x)=a(x+10)² verlaufen.

Ich würde sagen, dass also eine Randbedingung ist, dass die Katze zum Zeitpunkt 0 direkt nach "unten" bzw. in der gedrehten Version nach rechts rennt.
Aber viel weiter komme ich dennoch nicht.

Habe mir nur noch folgendes überlegt: Ich betrachte mal die gedrehte Version (Maus rennt nach oben).
Wenn ich die Tangentenschar an der gesuchten Kurve betrachte, dann müssen die y-Koordinaten der Schnittpunkte der Tangenten mit der y-Achse linear ansteigen (da die Maus immer gleich schnell rennt und die Tangente sozusagen der "Blick" der Katze auf die Maus ist, der sich halt linear nach oben bewegt).

Für einen Punkt P(a|f(a)) gilt ja dann: [mm] y_s=f'(a)(0-a)+f(a)=f(a)-a*f'(a) [/mm]

Könnte man jetzt einfach festlegen (wenn man die Gleichung mit x füllt): f(x)-x*f'(x)=mx? Oder ist da ein Denkfehler bei?
Und wenn es stimmen würde, müsste man das natürlich noch nach f(x) auflösen, wa aber leider nicht in meiner Macht liegt.

Wie auch immer: Wisst ihr da weiter?

[anon] Teufel

        
Bezug
Katze jagt Maus: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mi 10.12.2008
Autor: Fulla

Hallo Teufel,

die Kurve, die du suchst heißt []Traktrix(oder auch Hunde-, Hündchen- oder Schleppkurve).

[]Hier ist noch eine Herleitung. Mit den bezeichnungen aus deiner Aufgabe würde es hier heißen, dass die Katze in (0,c) sitzt und die Maus die y-Achse nach oben läuft.

Vielleicht hilft dir das weiter...
Lieben Gruß,
Fulla

Bezug
                
Bezug
Katze jagt Maus: andere Bedingung !
Status: (Korrektur) kleiner Fehler Status 
Datum: 13:34 Mi 10.12.2008
Autor: Al-Chwarizmi


> Hallo Teufel,
>  
> die Kurve, die du suchst heißt
> []Traktrix(oder
> auch Hunde-, Hündchen- oder Schleppkurve).
>  
> []Hier ist noch
> eine Herleitung. Mit den bezeichnungen aus deiner Aufgabe
> würde es hier heißen, dass die Katze in (0,c) sitzt und die
> Maus die y-Achse nach oben läuft.
>  
> Vielleicht hilft dir das weiter...
>  Lieben Gruß,
>  Fulla


hallo Florian,

Die Katz-Maus-Kurve, welche Teufel sucht, entspricht
nicht der Hundekurve. Bei der Hundekurve ist die Länge
der "Hundeleine" konstant. Für die Katz-Maus-Kurve gilt
eine andere Bedingung: Der Geschwindigkeitsvektor der
Katze ist zwar auch auf den Punkt "Maus" ausgerichtet,
aber ausserdem ist sein Betrag vorgegeben und nicht die
Distanz Katze-Maus. Man kommt also auf eine andere
Differentialgleichung.

Gruß     Al-Chw.


Bezug
                
Bezug
Katze jagt Maus: Unterschied
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Mi 10.12.2008
Autor: Al-Chwarizmi

Ich habe mich noch gefragt, was der Unterschied
zwischen der Hunde- und der Hündchenkurve sein mag.

Vermutlich ist es ganz einfach:
Bei der Hundekurve ist der Hund vorne, bei der
Hündchenkurve das Frauchen ...   ;-)


Al


Bezug
        
Bezug
Katze jagt Maus: Differentialgleichung
Status: (Antwort) fertig Status 
Datum: 14:12 Mi 10.12.2008
Autor: Al-Chwarizmi

hallo Teufel,

um diese Kurve zu bestimmen, muss man eine
Differentialgleichung aufstellen und (wenn möglich)
lösen. Führen wir zuerst ein paar Bezeichnungen ein:

     $\ m$: Geschwindigkeit der Maus  (m>0)

     $\ M(t)=(m*t\ /\ 0)$ : Position der Maus zum Zeitpunkt t

     $\ k$: Geschwindigkeit der Katze (k>m)

     $\ K(t)=(x(t)/y(t))$ : Position der Katze zum Zeitpunkt t

Der Geschwindigkeitsvektor [mm] \vec{v}_K [/mm] der Katze hat die Richtung
des Vektors [mm] \overrightarrow{KM} [/mm] und den Betrag k, also ist

     [mm] \vec{v}_K=\vektor{\dot{x}(t)\\\dot{y}(t)}=k*\bruch{\overrightarrow{KM}}{|\overrightarrow{KM}|} [/mm]

In Komponenten:

     [mm] \dot{x}(t)=\bruch{k}{\wurzel{(m*t-x(t))^2+(y(t))^2}}*(m*t-x(t)) [/mm]

     [mm] \dot{y}(t)=\bruch{k}{\wurzel{(m*t-x(t))^2+(y(t))^2}}*(-y(t)) [/mm]

Dieses Differentialgleichungssystem zu lösen könnte
schwierig werden. Ich würde z.B. einmal ausprobieren,
ob Mathematica damit was anfangen kann.
Es könnte aber auch sein, dass nur eine numerische
Lösung möglich ist.


LG    al-Chwarizmi






Bezug
                
Bezug
Katze jagt Maus: numerische Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Mi 10.12.2008
Autor: Al-Chwarizmi

Beim Googeln "Katze Maus Differentialgleichung" findet
man, dass dieses Problem vornehmlich in Numerik-Kursen
behandelt wird. Das deutet darauf hin, dass es wohl keine
analytische Lösung gibt.

Ich habe mir die Mühe genommen, eines meiner früheren
DGL-Programme so abzuändern, dass es diese DGL numerisch
löst. Hier ein Ergebnis:

[Dateianhang nicht öffentlich]

Gruß    Al-Chwarizmi  

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
Katze jagt Maus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Mi 10.12.2008
Autor: Teufel

Hiho!

Erstmal ein großes Dankeschön an euch, vor allem an Al für die ganze Mühe!  Scheint wohl doch schwieriger zu sein, als ich dachte (hätte dann wohl eher in "Hochschule" gehört).

Ich weiß, dass man in der Originalaufgabe früher die Kurve benennen sollte, die die Katze abrennt. Aber das könnte man eigentlich gar nicht so einfach sagen, oder?

Und auch danke für die Sache mit der Traktrix, Fulla! Wieder mal etwas interessantes zum durchlesen.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]