matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenJordansche Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Jordansche Normalform
Jordansche Normalform < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordansche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 So 06.04.2008
Autor: jaruleking

Hallo, mir ist hier bei einer Lösung einer Aufgabe was aufgetaucht, wo ich nicht weiß, warum die das so machen.

Also man soll die JNF von [mm] B=\pmat{ 14 & -5 & 3 \\ 2 & 7 & 3 \\ 2 & 1 & 9 } [/mm] bestimmen.

Man bestimme zuerst das Char. Polynom. das ist in diesem Fall:

[mm] P(x)=(x-12)^2*(x-6) [/mm]

damit haben wir die Eigenwerte [mm] x_1=12 [/mm] und [mm] x_2=6. [/mm] Jetzt heißt es, die geo. Vielfachheit zu bestimmen, d.h. die Eigenräume:

[mm] Eig(B,6)=Kern(B-6*E)=<(1,1,-1)^T> \Rightarrow [/mm] dim 1

Jetzt kommt der Knackpunkt, den ich nicht versteh. Es ist:

[mm] Eig(B,12)=Kern(B-12*E)=<(1,1,1,)^T> \Rightarrow [/mm] dim 1

so ich würde an dieser Stelle aufhören, weil die Summe der geo. Viel [mm] \not= [/mm] alge. Viel. ist.

aber die machen jetzt einfach:

[mm] Eig(B,12)=Kern(B-12*E)=<(1,1,1,)^T> [/mm] und [mm] Eig(B,12)=Kern(B-12*E)^2=<(1,1,1)^T,(0,1,1)^T> \Rightarrow [/mm] dim 2 und somit existiert eine JNF.

Aber wieso kann man diesen Schritt hier machen: [mm] Eig(B,12)=Kern(B-12*E)^2 [/mm] ???? das sehe ich zum ersten mal. wie gesagt, ich würde schon vorher abbrechen und nicht auf die JNF kommen. Des Weiteren ist es sehr komisch. Nach der letzen Rechnung hat ja Eig(B,12) dim 2, also müsste es ja eigentich für den EW 12 auch 2 Jordankästchen geben, aber nein. Deren JNF sieht wie folgt aus:

[mm] \pmat{ 12 & 1 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 6 } [/mm]

Jemand ne Erklärung dafür?
danke

        
Bezug
Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 So 06.04.2008
Autor: Zorba

Diese dim 2 des Eigenraumes² ist die LÄNGE DES JORDANKÄSTCHENS zum Eigenwert

Bezug
                
Bezug
Jordansche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:31 So 06.04.2008
Autor: jaruleking

Mal kurz ne frage. ich glaube, ich habe gerade was verwechselt.

muss bei der JNF die Summe der geo. Vielf. der Eigenwerte gleich n sein, also in unserem Bsp. 3, da wir ja im [mm] \IR^3?? [/mm]

weil ich glaube, bei der JNF muss das ja gar nicht gelten, das gilt doch nur für diagonalisierbare Matrizen. oder?

gruß

Bezug
                        
Bezug
Jordansche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 08:43 Mo 07.04.2008
Autor: angela.h.b.


> muss bei der JNF die Summe der geo. Vielf. der Eigenwerte
> gleich n sein, also in unserem Bsp. 3, da wir ja im
> [mm]\IR^3??[/mm]
>  
> weil ich glaube, bei der JNF muss das ja gar nicht gelten,
> das gilt doch nur für diagonalisierbare Matrizen. oder?

Genau.

Für die JNF brauchst Du nur ein zerfallendes charakteristisches Polynom, dh. die Summe der algebraischen Vielfachheiten muß n sein.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]