matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraJordannormalblöcke
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Jordannormalblöcke
Jordannormalblöcke < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordannormalblöcke: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:39 Mi 23.04.2008
Autor: Esra

Aufgabe
Sei A /in M( nxn) Matrix(K), so daß das charakteristische Polynom von A in Linearfaktoren zerfällt.
Zeigen Sie, daß die Anzahl von linear unabhängigen Eigenvektoren mit der Anzahl der Jordanblöcke übereinstimmt. Hinweis: Überlegen Sie sich, wieviele linear unabhängige Eigenvektoren ein einzelner Jordanbkock besitzt.

Hallo Leute,

ich habe bei dieser aufgabe ein problem, und zwar wie gehe ich da vor?

Ich weiß ungefähr die Schritte bin mir aber nicht ob sie richtig sind: Also
aus der Vorlesung ist mir bekannt, dass die Anzahl der Jordanblöcke gleich der Dimension des Eigenraums ist.
wir benötigen hier einen allg. Eigenraum, der natürlich durch den Kern definiert ist.
Mir scheint es, dass ich zu jedem Jordanblock genau einen Eigenvektir zu ordnen muss.

Aber wie soll ich anfangen, den Eigenraum zu bestimmen , denn Matirx A ist zu allgemein..

Ich würde mich sehr freuen, wenn mir da jemand weiter helfen könnte..ich blicke nicht mehr durch:-((




        
Bezug
Jordannormalblöcke: Antwort
Status: (Antwort) fertig Status 
Datum: 06:07 Do 24.04.2008
Autor: angela.h.b.


> Sei A /in M( nxn) Matrix(K), so daß das charakteristische
> Polynom von A in Linearfaktoren zerfällt.
> Zeigen Sie, daß die Anzahl von linear unabhängigen
> Eigenvektoren mit der Anzahl der Jordanblöcke
> übereinstimmt. Hinweis: Überlegen Sie sich, wieviele linear
> unabhängige Eigenvektoren ein einzelner Jordanbkock
> besitzt.
>  Hallo Leute,
>
> ich habe bei dieser aufgabe ein problem, und zwar wie gehe
> ich da vor?

Hallo,

mein grober Plan wäre so:

Deine Matrix hat ja lt. Voraussetzung ein zerfallendes charakteristisches Polynom. Also ist sie ähnlich zu eine JNF.

Wie Jordannormalformen vom Prinzip her aussehen, weißt Du.

Du kannst feststellen, daß jeder  Jordanblock einen Eigenvektor hat. Das siehst Du daran, daß es in jedem Block ein Element auf der Hauptdiagonalen gibt, welches nur Nullen über und unter sich hat.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]