Jordanbasis und Normalform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 15:50 Mi 05.07.2006 | Autor: | shark4 |
Aufgabe 1 | Bestimmen Sie Jordanbasen und Jordansche Normalform in [mm] M_{2 \times 2}(\IC) [/mm]
a) [mm] \pmat{ 1 & 1 \\ 1 & 1 } [/mm] b) [mm] \pmat{ 2 & 2 \\ 0 & 2 } [/mm] c) [mm] \pmat{ 3 & 0 \\ -2 & 7 } [/mm] |
Aufgabe 2 | Bestimmen Sie die Jordansche Normalform in [mm] M_{4 \times 4}(\IC) [/mm]
[mm] \pmat{ 13/7 & 0 & 0 & -2/7 \\ -2/7 & 2 & 0 & -4/7 \\ 5/7 & -1 & 1 & 3/7 \\ -3/7 & 1 & 1 & 15/7 } [/mm] |
Zu Aufgabe 1:
Also ich hab schon (hoffentlich richtig) in Erfahrung bringen können, wie man auf die Jordansche Normalform (JNF) kommt:
a) [mm] \det(\lambda Id - A) = \det \pmat{ \lambda - 1 & - 1 \\ - 1 & \lambda - 1 } = (\lambda - 1)^{2} - (-1)^{2} = \lambda^{2} - 2\lambda = (\lambda - 0)(\lambda - 2) [/mm]
Demnach sind [mm] \lambda_{1} = 0, \lambda_{2} = 2 [/mm], beide haben die algebraische Vielfachheit (VFH) 1, also lautet die JNF [mm] \pmat{ \underline{0} & 0 \\ 0 & \underline{2} } [/mm], wobei die unterstrichenen Werte die EW repräsentieren.
b) [mm] \det(\lambda Id - B) = \det \pmat{ \lambda - 2 & - 2 \\ 0 & \lambda - 2 } = (\lambda - 2)^{2}[/mm]
Das heißt [mm] \lambda_{1} = 2 [/mm] mit alg. VFH 2. Die JNF von B müsste also diese Form haben: [mm] \pmat{ \underline{2} & x \\ 0 & \underline{2} } [/mm], wobei das x nur 0 oder 1 sein kann.
Wie ermittelt man das x?
c) ist analog zu a) also EW sind 3 und 7 also JNF[mm]_{C} \pmat{ \underline{3} & 0 \\ 0 & \underline{7} } [/mm].
Und wie kommt man eigentlich auf die Jordanbasen?
Zu Aufgabe 2:
das char. Polynom lautet soweit ich mich nicht schon wieder verechnet hab: [mm] \lambda^{4} - 7\lambda^{3} + 18\lambda^{2} - 20\lambda + 8 [/mm].
Die EW sind 1 (alg. VFH 1) und 2 (alg. VFH 3) und die JNF müsste so aussehen:
[mm] \pmat{ 1 & 0 & 0 & 0 \\ 0 & 2 & x & 0 \\ 0 & 0 & 2 & y \\ 0 & 0 & 0 & 2 } [/mm]
Wie komm ich jetzt hier noch auf das x und y? Ist zwar so ähnlich wie bei der ersten Aufgabe die b), dennoch komm ich nicht weiter?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|