matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesJordan-Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Jordan-Normalform
Jordan-Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan-Normalform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:05 Mo 03.06.2013
Autor: Trikolon

Aufgabe
Die Matrix B [mm] \in [/mm] M(5x5, IR) sei geg als
B= [mm] \pmat{ 5 & 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4}. [/mm]

a) Gibt es eine symmetrische Matrix A [mm] \in [/mm] M(5x5, IR), de zu B konjugiert ist?
b) Gibt es eine hermitesche (selbstadjungierte) Matrix C [mm] \in [/mm] M (5x5, C), die das gleiche char. Polynom hat wie C?
c) Gibt es eine orthogonale Matrix U [mm] \in O_5 [/mm] (IR), die die gleichen EW wie B hat?
d) Gibt es eine symmetrische Matrix [mm] \in [/mm] M(5x5, IR) , die das gleiche Min.poly wie B hat?

Hallo,

a) Ja, da für die EW von B gilt: algebr. Vielfachheit = geometr. Vielfachheit: B ist diagonalisierbar. --> Gibt zu B konjugierte Matrix A.

b) Ja, z.B. C mit der Gestalt, dass C eine 5x5 Matrix mit den EW von B auf den Diagonalen und 0 sonst ist.

c) Ja, z.B. U wie C aus Teil b).

d) Ich denke nein, bin mir aber nicht sicher....

Danke schonmal

        
Bezug
Jordan-Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mo 03.06.2013
Autor: Trikolon

Hallo.

Sind meine Ansätze so ok? Und wie muss ich bei der d) vorgehen?

Gruß

Bezug
                
Bezug
Jordan-Normalform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:32 Di 04.06.2013
Autor: Trikolon

Noch zu der d): Das Minpoly von B wäre ja [mm] (x-5)^2(x-2)(x-3)(x-4). [/mm] Aber es gibt soch keine symmetrsiche Matrix mit diesem Minpoly, oder?

Bezug
                        
Bezug
Jordan-Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:26 Di 04.06.2013
Autor: Trikolon

Hallo,

hat keiner eine Idee?

Wäre wirklich sehr dankbar!

Bezug
                                
Bezug
Jordan-Normalform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:01 Do 06.06.2013
Autor: Trikolon

Bei a) würde ich meine Antwort revidieren, die gegebene Matrix ist nicht diagonalisierbar, da die geometrische Vielfachheit des EW 5 nicht mit der algebraischen übereinstimmt.

Stimmt das und der Rest so? Gibt es Ideen zur d)

Bezug
                                        
Bezug
Jordan-Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Sa 08.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Jordan-Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 06.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Jordan-Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 05.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]