matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesJordan-Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Jordan-Normalform
Jordan-Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan-Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Di 18.05.2010
Autor: kiwibox

Aufgabe
Sei [mm] \phi [/mm] ein Endomorphismus über einem [mm] \IQ [/mm] - Vektorraum. Bestimmen Sie alle möglichen Jordan-Normalformen (bis auf die Reihenfolge der Jordanblöcke), wenn das charakteristische Polynom [mm] h_{\phi} [/mm] und das Minimalpolynom [mm] g_{\phi} [/mm] die unten angegebene Gestalt haben.
[mm] h_{\phi}(X)=(X-7)^6 [/mm]
[mm] g_{\phi}(X)=(X-7)^3 [/mm]
Geben Sie zusätzlich für alle Möglichkeiten die Dimension der jeweiligen Eigenräume an.

Hallo...
ich habe eine Frage zur der o.g. Aufgabenstellung.
Ich habe jetzt drei verschiedene Möglichkeiten, wie die jeweilige Jordan-Normalform aussehen könnte:

1. 1-mal 3x3 Block, 1-mal 2x2 Block und einen 1-mal 1x1 Block
dim(kern(A-7In))=3, [mm] dim(Kern((A-7In)^2)=5, dim(Kern((A-7In)^3)=dim(\IQ)=6 [/mm]

2. 1-mal 3x3 und 3-mal 1x1 Block
dim(kern(A-7In)=4 (4 wg. 4 Blöcke), [mm] dim(kern((A-7In)^3)=6 [/mm] (^3 weil der größte Block 3x3 ist)...aber wie bestimme ich die anderen dim? oder brauche ich die dim lt. Aufgabenstellung nicht bestellen? irgendwie geht das nicht auf. heißt das, die Möglichkeit existiert nicht?

3. 2-mal 3x3
dim(kern(A-7In))=2 (wg. 2 Blöcke) [mm] dim(kern((A-7In)^2)=6 [/mm] (6 wg. [mm] dim(\IQ)=6), [/mm] aber das geht doch auch nicht auf, weil ^2 nicht gehen soll, weil ^2 bedeutet doch, der größste Block könnte höchstens 2x2 groß sein, oder? heißt diese Möglichkeit geht auch nicht?

Danke, für ihre Hilfe....

lg
kiwibox

        
Bezug
Jordan-Normalform: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 00:18 Mi 19.05.2010
Autor: jack21

passt schon. es gibt nur die eine Möglichkeit.

Bezug
                
Bezug
Jordan-Normalform: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 10:07 Mi 19.05.2010
Autor: angela.h.b.


> passt schon. es gibt nur die eine Möglichkeit.

Hallo,

nein, es gibt die drei zunächst von der Fragenden gefundenen Möglichkeiten.
(s. meine Antwort)

Gruß v. Angela


Bezug
        
Bezug
Jordan-Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Mi 19.05.2010
Autor: angela.h.b.


> Sei [mm]\phi[/mm] ein Endomorphismus über einem [mm]\IQ[/mm] - Vektorraum.
> Bestimmen Sie alle möglichen Jordan-Normalformen (bis auf
> die Reihenfolge der Jordanblöcke), wenn das
> charakteristische Polynom [mm]h_{\phi}[/mm] und das Minimalpolynom
> [mm]g_{\phi}[/mm] die unten angegebene Gestalt haben.
>  [mm]h_{\phi}(X)=(X-7)^6[/mm]
>  [mm]g_{\phi}(X)=(X-7)^3[/mm]
>  Geben Sie zusätzlich für alle Möglichkeiten die
> Dimension der jeweiligen Eigenräume an.
>  Hallo...
>  ich habe eine Frage zur der o.g. Aufgabenstellung.
>  Ich habe jetzt drei verschiedene Möglichkeiten, wie die
> jeweilige Jordan-Normalform aussehen könnte:

Hallo,

ja, und die sind alle drei richtig.
Du sollst jeweils die JNF sagen und die Dimension des Eigenraumes, also die Dimension von Kern(A-7E).
Die hast Du jedesmal richtig angegeben.

Die Dimensionen der Haupträume anderer Stufen sind überhaupt nicht gefragt, man kann sie aber auch angeben, wenn man möchte.

Das charakteristische Polynom ist

>  [mm]h_{\phi}(X)=(X-7)^6[/mm].

Es zerfällt in Linearfaktoren, die Matrix hat also eine JNF.
Wir haben eine [mm] 6\times [/mm] 6-Matrix, welche auf der Hauptdiagonalen überall die 7 stehen hat.

Das Minimalpolynom ist

>  [mm]g_{\phi}(X)=(X-7)^3[/mm].

Daraus können wir wissen, daß das größte Kästchen ein [mm] 3\times [/mm] 3-Kästchen ist.

Man kommt damit genau auf die drei Möglichkeiten, die Du benennst.
Die Dimension des Eigenraumes zu 7 ist die Anzahl der Kästchen, auch das hast Du jedesmal richtig hingeschrieben.

dim Kern [mm] (A-7E)^3 [/mm] ist jedesmal =6,
fraglich bleibt höchstens noch die Dimension von dim [mm] Kern(A-7E)^2. [/mm]

Ich mache Dir das jetzt am Fall 1 vor. Es sei [mm] B:=(b_1, [/mm] ..., [mm] b_6) [/mm] eine zugehörige Jordanbasis.
Die JNF ist

[mm] \pmat{7&1&0&0&0&0\\0&7&1&0&0&0\\0&0&7&0&0&0\\0&0&0&7&1&0\\0&0&0&0&7&0\\0&0&0&0&0&7} [/mm]

[mm] b_1, b_4 [/mm] und [mm] b_6 [/mm] sind die drei linear unabhängigen Eigenvektoren, die Kern(A-7E) aufspannen.

Sie sind auch in [mm] Kern(A-7E)^2, [/mm] zusätzlich aber noch die Vektoren [mm] b_2 [/mm] und [mm] b_5. [/mm] (Rechne es nach!)
Es ist [mm] (b_1, b_2, b_4, b_5, b_6) [/mm] eine Basis von [mm] Kern(A-7E)^2, [/mm] also hat der Hauptraum 2. Stufe hier die Dimension 5,

und [mm] (b_1,...,b_6) [/mm]  ist schließlich eine Basis von [mm] Kern(A-7E)^3=\IR^6. [/mm]



> 1. 1-mal 3x3 Block, 1-mal 2x2 Block und einen 1-mal 1x1
> Block
>  dim(kern(A-7In))=3, [mm]dim(Kern((A-7In)^2)=5, dim(Kern((A-7In)^3)=dim(\IQ)=6[/mm]

genau.

>  
> 2. 1-mal 3x3 und 3-mal 1x1 Block
>  dim(kern(A-7In)=4 (4 wg. 4 Blöcke), [mm]dim(kern((A-7In)^3)=6[/mm]

Kern (A-7E)= [mm] [/mm] , also ist die Dimension=2.

>  
> 3. 2-mal 3x3
>  dim(kern(A-7In))=2 (wg. 2 Blöcke)

[mm] dimKern(A-7E)^3=6, [/mm]
[mm] dimKern(A-7E)^2=, [/mm] also ist die Dimension =4.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]