matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenIst die Matrix invertierbar?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Ist die Matrix invertierbar?
Ist die Matrix invertierbar? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist die Matrix invertierbar?: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 21:34 Fr 07.12.2012
Autor: mathemagnus

Aufgabe
Ist die Matrix A [mm] \in [/mm] R^(n x n ) invertierbar?

[mm] \begin{bmatrix} 1 & \cdots & n \\ n+1 & \dots & 2n \\ \vdots & & \vdots \\ n^2-n+1 & \cdots & n² \end{bmatrix} [/mm]

Hallo, ich habe ein Problem bei dieser Aufgabe.
Undzwar wie man eine inverse berechnet ist mir klar, aber wie berechne ich so eine inverse wo auch n mit drinnen ist?
Kann mir jmd. Hinweise geben oder erste Ansätze?

Euer mathemagnus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ist die Matrix invertierbar?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Fr 07.12.2012
Autor: angela.h.b.


> Ist die Matrix A [mm]\in[/mm] R^(n x n ) invertierbar?
>
> [mm]\begin{bmatrix} 1 & \cdots & n \\ n+1 & \dots & 2n \\ \vdots & & \vdots \\ n^2-n+1 & \cdots & n² \end{bmatrix}[/mm]


Hallo,

ich kapiere nicht, wie die Matrix gemacht ist, nach welchem Muster sie aufgebaut wird.

LG Angela


Bezug
                
Bezug
Ist die Matrix invertierbar?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 Fr 07.12.2012
Autor: MathePower

Hallo angela,

>
> > Ist die Matrix A [mm]\in[/mm] R^(n x n ) invertierbar?
> >
> > [mm]\begin{bmatrix} 1 & \cdots & n \\ n+1 & \dots & 2n \\ \vdots & & \vdots \\ n^2-n+1 & \cdots & n² \end{bmatrix}[/mm]
>  
>
> Hallo,
>  
> ich kapiere nicht, wie die Matrix gemacht ist, nach welchem
> Muster sie aufgebaut wird.
>  

Die Einträge der Matrix ergeben sich gemäß der Formel

[mm]a_{ij}=\left(i-1\right)*n+j, \ 1 \le i \le n, 1 \le j \le n[/mm]


> LG Angela
>  


Gruss
MathePower

Bezug
        
Bezug
Ist die Matrix invertierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Fr 07.12.2012
Autor: MathePower

Hallo mathemagnus,

> Ist die Matrix A [mm]\in[/mm] R^(n x n ) invertierbar?
>
> [mm]\begin{bmatrix} 1 & \cdots & n \\ n+1 & \dots & 2n \\ \vdots & & \vdots \\ n^2-n+1 & \cdots & n² \end{bmatrix}[/mm]
>  
> Hallo, ich habe ein Problem bei dieser Aufgabe.
>  Undzwar wie man eine inverse berechnet ist mir klar, aber
> wie berechne ich so eine inverse wo auch n mit drinnen
> ist?
>  Kann mir jmd. Hinweise geben oder erste Ansätze?
>  


Versuche durch Zeilenumformungen die Determinante zu bestimmen.


> Euer mathemagnus
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Ist die Matrix invertierbar?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 Mo 10.12.2012
Autor: mathemagnus

Hallo, die Determinante kann ich bestimmen aber ich verstehe das nicht in  der allgemeinen schreibweise. wie mache ich das?

Bezug
                        
Bezug
Ist die Matrix invertierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Mo 10.12.2012
Autor: schachuzipus

Hallo mathemagnus,


> Hallo, die Determinante kann ich bestimmen aber ich
> verstehe das nicht in  der allgemeinen schreibweise. wie
> mache ich das?

Hast du mal die Determinante für [mm]n=1,2,3,4[/mm] ausgerechnet?

Ich habe das mal für [mm]n=3[/mm] gemacht. (modulo Rechenfehler)

An der [mm]3\times 3[/mm]-Matrix kann man auch heuristich eine Strategie "ableiten" oder überlegen, um für allg. [mm]n[/mm] entsprechende Zeilenumformungen zu machen, um die Determinante zu berechnen.

Wenn ich das auf die Schnelle richtig überblicke, kann man das [mm]-((k-1)\cdot{}n+1)[/mm]-fache von Zeile 1 auf Zeile [mm]k[/mm] addieren, [mm]k=2,3,4,...[/mm]

Dann "sieht" man schon was ...


Allerdings scheint mir der Fall [mm]n=3[/mm] die Frage schon zu beantworten ...

Gruß

schachuzipus


Bezug
        
Bezug
Ist die Matrix invertierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Mo 10.12.2012
Autor: rabilein1


>  Und zwar wie man eine inverse berechnet ist mir klar, aber
> wie berechne ich so eine inverse wo auch n mit drinnen ist?
>  Kann mir jmd. Hinweise geben oder erste Ansätze?

Vielleicht hilft es dir ja weiter, wenn du für n eine konkrete Zahl einsetzt (zum Beispiel 3 oder 4). Dann hast du eine konkrete Matrix, für die du die Inverse berechnen kannst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]