matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeIst Matrix diagonalisierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Ist Matrix diagonalisierbar
Ist Matrix diagonalisierbar < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist Matrix diagonalisierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Fr 17.11.2023
Autor: Euler123

Aufgabe
Sind die folgenden Matrizen diagonalisierbar?

[mm] \left(\begin{array}{lll} 3 & 4 & -3 \\ 2 & 7 & -4 \\ 3 & 9 & -5 \end{array}\right), \quad\left(\begin{array}{ccc} 1 & -4 & -4 \\ 0 & 3 & 2 \\ -2 & -7 & -4 \end{array}\right), \quad\left(\begin{array}{ccc} 3 & 2 & -1 \\ 1 & 0 & 4 \\ 3 & 0 & 1 \end{array}\right) [/mm] .

Die ersten beiden Matrizen habe ich bereits auf Diagonalisierbarkeit überprüft (ich habe die algebraische und geometrische Vielfachheit bestimmt und geschaut, ob diese ident sind).

Somit wäre die erste Matrix nicht Diagonalisierbar, die zweite aber schon!

Bei der dritten würde ich nun nach dem gleichen Schemata, folgendes erhalten:
[mm] \lambda_{1} \approx [/mm] 4,270
[mm] \lambda_{2} \approx-0,135+\tilde{I} \cdot(2,266) [/mm]
[mm] \lambda_{3} \approx-0,135-\tilde{I} \cdot(2,266) [/mm]
[mm] v_{1} \approx\left(\begin{array}{c}1,090 \\ 1,192 \\ 1\end{array}\right) [/mm]
[mm] v_{2} \approx\left(\begin{array}{c}-0,378+\tilde{u} \cdot(0,755) \\ 0,237-\tilde{u} \cdot(1,612) \\ 1\end{array}\right) [/mm]

Somit wäre diese Matrix nicht Diagonalisierbar?

Meine konkrete Frage würde nun darin bestehen, ob ich dies, speziell im Fall der dritten Matrix, auch noch anders bzw. anschaulicher zeigen könnte?
LG Euler

Ich habe diese Frage in keinem anderen Forum gestellt!

        
Bezug
Ist Matrix diagonalisierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Sa 18.11.2023
Autor: Infinit

Hallo Euler123,
vom Rechenweg her wüsste ich jetzt keine kürzere Methode. Allerdings hättest Du nach der Bestimmung der Eigenwerte bereits aufhören können, da aufgrund der beiden komplexen Nullstellen klar ist, dass sich keine Linearkombination im Reellen darstellen lässt.  
Viele Grüße,
Infinit

Bezug
                
Bezug
Ist Matrix diagonalisierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Sa 18.11.2023
Autor: Euler123

Hallo Infinit,
Alles klar - und danke für deine Antwort!
LG Euler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]