Isomorphie zur sym. Gruppe S_3 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:18 Di 23.10.2007 | Autor: | kittie |
Aufgabe | Die Abb. f(x)=1-x & g(x)=1/x von [mm] \IR-{0,1} [/mm] in sich erzeugen eine Untergruppe in der Gruppe der Bijektionen von [mm] \IR-{0,1}. [/mm] (Die Verknüpfung ist die Komposition zweier Abbildungen).
Zeige: Diese Untergruppe hat die Ordnung 6 und ist isomorph zur symm. Gruppe [mm] S_3 [/mm] |
Hallo zusammen,
schlage mich mit dieser Aufgabe hier rum.
Habe erstmal die Elemente der U'Gruppe bestimmt:
U:={f(x),g(x), h(x)=(f [mm] \circ [/mm] g)(x)=1-1/x, r(x)=(g [mm] \circ [/mm] f [mm] \circ [/mm] f [mm] \circ [/mm] g)(x)=x, q(x)=(f [mm] \circ [/mm] g [mm] \circ [/mm] f)(x)=x/(x-1), p(x)=(g [mm] \circ [/mm] f)(x)= 1/(1-x)}
das sind alle möglichen.
Leider weiß ich jetzt nicht wie ich zu zeigen habe dass diese U'Gruppe isomorph ist zur [mm] S_3.
[/mm]
Wie muss ich da vorgehen. Ich muss doch einen bijektiven Gruppenhomomorphismus zwischen diesen beiden Gruppe finden oder???
Weiß aber nicht wie, steh da völlig im leeren und hoffe auf eure Hilfe!!
Liebe Grüße, kittie
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:38 Di 23.10.2007 | Autor: | statler |
Hallo Kittie!
> Die Abb. f(x)=1-x & g(x)=1/x von [mm]\IR-{0,1}[/mm] in sich erzeugen
> eine Untergruppe in der Gruppe der Bijektionen von
> [mm]\IR-{0,1}.[/mm] (Die Verknüpfung ist die Komposition zweier
> Abbildungen).
> Zeige: Diese Untergruppe hat die Ordnung 6 und ist
> isomorph zur symm. Gruppe [mm]S_3[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> schlage mich mit dieser Aufgabe hier rum.
> Habe erstmal die Elemente der U'Gruppe bestimmt:
>
> U:={f(x),g(x), h(x)=(f [mm]\circ[/mm] g)(x)=1-1/x, r(x)=(g [mm]\circ[/mm] f
> [mm]\circ[/mm] f [mm]\circ[/mm] g)(x)=x, q(x)=(f [mm]\circ[/mm] g [mm]\circ[/mm] f)(x)=x/(x-1),
> p(x)=(g [mm]\circ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
f)(x)= 1/(1-x)}
>
> das sind alle möglichen.
OK, aber das kommt mir ein bißchen unsystematisch und unbegründet vor, also meine Lieblingsfrage: Warum sind das alle? Ohne die schlüssige Beantwortung dieser Frage ist die Aufgabe nicht vollständig gelöst.
> Leider weiß ich jetzt nicht wie ich zu zeigen habe dass
> diese U'Gruppe isomorph ist zur [mm]S_3.[/mm]
>
> Wie muss ich da vorgehen. Ich muss doch einen bijektiven
> Gruppenhomomorphismus zwischen diesen beiden Gruppe finden
> oder???
Exactemang!
> Weiß aber nicht wie, steh da völlig im leeren und hoffe auf
> eure Hilfe!!
Du ärmste! Eine Möglichkeit: Du schreibst diese 6 Elemente untereinander und rechts daneben die 6 Elemente der [mm] S_{3}, [/mm] und dann malst du Pfeile von links nach rechts, die zeigen, welches Element auf welches abgebildet werden soll. Und dann rechnest du nach, daß das ein bijektiver Homomorphismus ist.
Eine andere Möglichkeit ergibt sich, wenn du aus der Vorlesung oder einem schlauen Buch weißt, wie viele Gruppen der Ordnung 6 es überhaupt gibt.
Gruß aus HH-Harburg
Dieter
|
|
|
|