matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIsomorphie zeigen,Faktorgruppe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Isomorphie zeigen,Faktorgruppe
Isomorphie zeigen,Faktorgruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphie zeigen,Faktorgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Di 02.02.2016
Autor: sissile

Aufgabe
Seien [mm] m_1,..,m_k \in \mathbb{Z}_{>0}. [/mm]
Zeigen Sie [mm] m_1*...*m_i \mathbb{Z} [/mm] / [mm] m_1*..*m_{i+1} \mathbb{Z} \cong \mathbb{Z}/m_{i+1} \mathbb{Z} [/mm] für 1 [mm] \le [/mm] i < k

Die Frage ist bei der Nachhilfe aufgetaucht, diese konnte ich aber nicht total sauber eklären..

[mm] \mathbb{Z}/m_{i+1} \mathbb{Z} \cong \mathbb{Z}_{m_{i+1}} [/mm] mittels Homomorphiesatz angewandt auf [mm] \phi:\mathbb{Z} \rightarrow \mathbb{Z}_{m_{i+1}} [/mm] mittels [mm] \phi(x)= \overline{x} [/mm]


[mm] |m_1*...*m_i \mathbb{Z} [/mm] / [mm] m_1*..*m_{i+1}\mathbb{Z}|= m_{i+1} [/mm]
Hier konnte ich nicht sauber erklären warum das so ist:
[mm] m_1...m_i \mathbb{Z} [/mm] / [mm] m_1..m_{i+1} \mathbb{Z}=\{ a + m_1..m_{i+1} \mathbb{Z} | a \in m_1...m_i \mathbb{Z}\}=\{m_1..m_i + m_1..m_{i+1} \mathbb{Z}, m_1..m_i*2 + m_1...m_{i+1} \mathbb{Z},....,, m_1..m_i*m_{i+1} + m_1...m_{i+1} \mathbb{Z}\} [/mm]
Kann man das eleganter/sauberer beweisen? Zeigt man das eher mittel einer Abbildung [mm] \phi: m_1*...*m_i \mathbb{Z} \rightarrow \mathbb{Z}_{m_{i+1}}? [/mm]

Wäre das geklärt:
[mm] m_1*...*m_i \mathbb{Z} [/mm] / [mm] m_1*..*m_{i+1}\mathbb{Z} [/mm] ist als Untergruppe der zyklischen Gruppe [mm] \mathbb{Z} [/mm] ebenfalls zyklisch also folgt [mm] m_1*...*m_i \mathbb{Z} [/mm] / [mm] m_1*..*m_{i+1}\mathbb{Z} \cong \mathbb{Z}_{m_{i+1}} [/mm]
Aus der Transitivität der Isomorphie folgt die Behauptung.

        
Bezug
Isomorphie zeigen,Faktorgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Di 02.02.2016
Autor: UniversellesObjekt

Wir sind uns wohl einig, dass [mm] $m\IZ/mn\IZ\cong \IZ/n\IZ$ [/mm] das ist, was wir haben wollen, falls [mm] $m\not=0$. [/mm] Man hat einen surjektiven Homomorphismus [mm] $\IZ\longrightarrow m\IZ\longrightarrow m\IZ/mn\IZ$, $x\longmapsto mx\longmapsto\overline{mx}$. [/mm] Es liegt [mm] $x\in\ker\iff mn\mid mx\iff n\mid x\iff x\in n\IZ$. [/mm] Aus dem Homomorphiesatz folgt alles.

Liebe Grüße,
KidinK

Bezug
                
Bezug
Isomorphie zeigen,Faktorgruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Mi 03.02.2016
Autor: sissile

Vielen Dank!
Alles wieder klar.

Liebe Grüße,
Sissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]