Irreduzible Bestandteile < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Faktorisieren Sie das Polynom p(x) = [mm] x^4+2x^3-x-2 [/mm] in [mm] \IR[x] [/mm] und [mm] \IC[x] [/mm] in irreduzible Bestandteile. |
Hallo,
ich habe die Nullstellen des Polynoms erraten, und dann Polynomdivison, dann p-q Formel usw. das ist kein Problem.
Am Ende habe ich das hier:
[mm] (x-1)(x+2)(x-(-\bruch{1}{2}+i\wurzel{\bruch{3}{4}}))(x-(-\bruch{1}{2}-i\wurzel{\bruch{3}{4}}))
[/mm]
Das ist aber nur in [mm] \IC[x], [/mm] wie bekomme ich die irreduziblen Bestandteile über [mm] \IR[x] [/mm] raus, was muss ich konkret machen?
Vielen Dank im Voraus.
|
|
|
|
> Faktorisieren Sie das Polynom p(x) = [mm]x^4+2x^3-x-2[/mm] in [mm]\IR[x][/mm]
> und [mm]\IC[x][/mm] in irreduzible Bestandteile.
>
> Hallo,
>
> ich habe die Nullstellen des Polynoms erraten, und dann
> Polynomdivison, dann p-q Formel usw. das ist kein Problem.
>
> Am Ende habe ich das hier:
>
> [mm](x-1)(x+2)(x-(-\bruch{1}{2}+i\wurzel{\bruch{3}{4}}))(x-(-\bruch{1}{2}-i\wurzel{\bruch{3}{4}}))[/mm]
>
> Das ist aber nur in [mm]\IC[x],[/mm] wie bekomme ich die
> irreduziblen Bestandteile über [mm]\IR[x][/mm] raus, was muss ich
> konkret machen?
Die Faktoren [mm] (x-(-\bruch{1}{2}+i\wurzel{\bruch{3}{4}})) [/mm] und [mm] (x-(-\bruch{1}{2}-i\wurzel{\bruch{3}{4}})) [/mm] liegen nicht in [mm] \IR[x]. [/mm] Ausmultipliziert geben sie [mm] x^2+x+1, [/mm] das in [mm] \IR[x] [/mm] irreduzibel ist.
Somit bekommst du [mm] (x-1)(x+2)*(x^2+x+1).
[/mm]
|
|
|
|
|
Hallo,
achso, stimmt.
Also kann man zuerst immer die Lösungen über [mm] \IC [/mm] bestimmen und dann einfach die komplexen Nullstellen miteinander multiplizieren, um eine Lösung über [mm] \IR [/mm] zu bekommen. Das geht immer?
|
|
|
|
|
Hallo,
> Also kann man zuerst immer die Lösungen über [mm]\IC[/mm]
> bestimmen und dann einfach die komplexen Nullstellen
> miteinander multiplizieren, um eine Lösung über [mm]\IR[/mm] zu
> bekommen. Das geht immer?
Das kommt wiederum darauf an, wovon wir eigentlich sprechen. Wenn ein Polynom ausschließlich reelle Koeffizienten besitzt, dann treten komplexe Linearfaktoren stets paarweise in der Form [mm] (x-z)*(x-\overline{z})=x^2-2Re(z)*x+(Re(z))^2+(Im(z))^2 [/mm] auf. Dies sollte deine Frage beaantworten.
Gruß, Diophant
|
|
|
|