matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInvertierbarkeit von Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Invertierbarkeit von Matrizen
Invertierbarkeit von Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbarkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 29.11.2006
Autor: dimi8585

Aufgabe
Sei A eine 2x2 Matrix mit Einträgen aus einem Ring R. Ist detA [mm] \not= [/mm] 0 (Nullelement der Add. auf R) eine hinreichende Bedingung dafür, dass A invertierbar ist?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also mein Verständnis sagt mir das es eine hinreichende Bedingung ist. So war es bis jetzt bei allen Matrizen die wir kennengelernt haben. Bin mir aber nicht sicher. Was sagt ihr dazu???



        
Bezug
Invertierbarkeit von Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 Do 30.11.2006
Autor: Nansen

Hallo dimi8585,

man kann schlecht dazu Stellung nehmen, wenn man nichts vom Stand Eurer Vorlesung weiß.
Was habt ihr in der Vorlesung gehabt, was ihr hier verwenden dürft?
Gibt es einen Satz zur Invertierbarkeit von Matrizen, oder sowas? :)

Edit1: Hast Du noch mehr Hinweise für Deinen Ring?
Edit2: Viele Grüße vergessen:

Viele Grüße
Nansen

Bezug
        
Bezug
Invertierbarkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Mi 06.12.2006
Autor: Herby

Hallo Dimi,


den Begriff der []regulären Matrix  <-- click it

kennst du sicher -

Eine Einheit in einem kommutativen Ring ist ein Teiler von 1 und wenn det A eine Einheit sein soll, dann darf sie auch nicht 0 sein, oder besser dann muss det A [mm] \not= [/mm] 0 sein.


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]