matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInverse Matrix bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Inverse Matrix bestimmen
Inverse Matrix bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Do 14.02.2008
Autor: ElDennito

Aufgabe
Für welche Parameter [mm] \lambda\in\IR [/mm] ist folgende Matrix invertierbar?

[mm] A=\pmat{ 1 & 2 \\ 3 & \lambda } [/mm]

Im Falle der Invertierbarkeit von A bestimmen Sie in Abhängigkeit des Parameters [mm] \lambda [/mm] die zu A inverse Matrix [mm] A^{-1} [/mm] .

Hallo,

jede Matrix ist dann invertierbar, wenn die Determinante ungleich 0 ist.  Hier ist die Determinante = [mm] (1*\lambda)-2*3=\lambda-6. [/mm]

Schön und gut, aber wie errechne ich die inverse Matrix zur Matrix A? Mit dem Gauß-Verfahren. Aber mich stört das [mm] \lambda [/mm] . Ich muss es ja schaffen, dass die 2 eine Null wird. Wie gelingt mir das? Könnt ihr mir einen Tipp geben? Wäre euch dankbar. Es geht um meinen Schein... ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverse Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Do 14.02.2008
Autor: Steffi21

Hallo, gebe aber noch an, für [mm] \lambda\not=6, [/mm] denn für [mm] \lambda=6 [/mm] wird ja die Determinante zu Null,

[mm] \pmat{ 1 & 2 & 1 & 0 \\ 3 & \lambda & 0 & 1} [/mm]

schreibe die Einheitsmatrix dahinter, jetzt durch Zeilenumformungen die Einheitsmatrix nach links bringen, dann fertig

Steffi

Bezug
                
Bezug
Inverse Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Do 14.02.2008
Autor: ElDennito

Vielen Dank für die schnelle Antwort.

Aber die Einheitsmatrix links hinzubekommen, ist ja gerade mein Problem.

A= 1 2
     3 Lambda

Irgendwann steht dann bei mir:

A = 1   2                             1  0
  0  Lambda-6                  -3 1

Was mach ich, damit die 2 eine Null wird. Das Lambda-6 stört mich. Danke schonmal.

Bezug
                        
Bezug
Inverse Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Do 14.02.2008
Autor: Marcel

Hallo,

ich weiß gar nicht, was Du da rechnest. Du wirst hier 4 Gleichungen in 4 Variablen erhalten, dieses Gleichungssystem wird für [mm] $\lambda \not=6$ [/mm] lösbar sein (übrigens ist eine (quadratische) Matrix GENAU DANN invertierbar, wenn die Determinante nicht verschwindet).

Wenn Du also

[mm] $A=\pmat{ 1 & 2 \\ 3 & \lambda }$ [/mm] mit [mm] $\lambda \not=6$ [/mm]

gegeben hast und

[mm] $A^{-1}=\pmat{a & b\\ c & d}$ [/mm]

suchst, so muss [mm] $A*A^{-1}=\pmat{ 1 & 2 \\ 3 & \lambda }*\pmat{a & b\\ c & d}=\pmat{1 & 0 \\ 0 & 1}$ [/mm]

gelten, was (für beliebiges, aber festes [mm] $\lambda \in \IR \backslash\{6\}$) [/mm] die vier Gleichungen in den vier Variablen $a,b,c,d$:

(I)    $a+2c=1$

(II)   $b+2d=0$

(III) [mm] $3a+\lambda*c=0$ [/mm] (hier erkennt man, wenn man mit (I) vergleicht,
übrigens auch, warum [mm] $\lambda \not=6$ [/mm] sein sollte, wenn [mm] $A^{-1}$ [/mm] existiert)

(IV) [mm] $3b+\lambda [/mm] d=1$

zur Folge hat, und dieses Gleichungssystem ist (genau) für [mm] $\lambda \not=6$ [/mm] in eindeutiger Weise lösbar.

Wie gesagt, betrachte [mm] $\lambda \not=6$ [/mm] als fest und löse diese vier Gleichungen in den vier Varibalen $a,b,c,d$, um $a$, $b$, $c$ und $d$ zu bestimmen.

Beachten solltest Du nämlich:
Es ist [mm] $A=A(\lambda)$, [/mm] also wird auch [mm] $A^{-1}$ [/mm] von [mm] $\lambda$ [/mm] abhängig sein (und überhaupt existent genau dann, wenn [mm] $\lambda \not=6$). [/mm]

Gruß,
Marcel

Bezug
                                
Bezug
Inverse Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Do 14.02.2008
Autor: ElDennito

Sry, aber das verstehe ich nicht. Ich soll jetzt a,b,c,d herausbekommen. Aber wie kommst du auf die Gleichungen I-IV? Und wenn man die Gleichungen hat: Wie errechne ich damit a-d?

Ich dachte, es sei ganz schnell zu ermitteln? Siehe Steffi oben.

Danke schonmal.

Bezug
                                        
Bezug
Inverse Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Do 14.02.2008
Autor: Steffi21

Hallo wir hatten ja

[mm] \pmat{ 1 & 2 & 1 & 0 \\ 3 & \lambda & 0 & 1 } [/mm]

neue II. Zeile bilden: 3*I-II

[mm] \pmat{ 1 & 2 & 1 & 0 \\ 0 & 6-\lambda & 3 & -1 } [/mm]

neue I. Zeile bilden: [mm] (6-\lambda)*I-2*II [/mm]

[mm] \pmat{6-\lambda & 0 & -\lambda & 2 \\ 0 & 6-\lambda & 3 & -1 } [/mm]

jetzt 1. Zeile/ 1. Spalte muß eine 1 stehen
jetzt 2. Zeile/ 2. Spalte muß eine 1 stehen

also dividiere beide Zeilen durch ....

dann steht links die Einheitsmatrix und rechts die inverse Matrix

Steffi


Bezug
                                                
Bezug
Inverse Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Do 14.02.2008
Autor: ElDennito

Danke!

Nur zur Kontrolle: Was kommt dann da raus?

Bezug
                                                        
Bezug
Inverse Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Do 14.02.2008
Autor: Steffi21

Hallo, du schaffst den letzten Schritt:

Division durch [mm] 6-\lambda [/mm]

in der 1. Zeile:

[mm] \bruch{6-\lambda}{6-\lambda}= [/mm]

[mm] \bruch{0}{6-\lambda}= [/mm]

[mm] \bruch{-\lambda}{6-\lambda} [/mm]

[mm] \bruch{2}{6-\lambda} [/mm]

in der 2. Zeile:

[mm] \bruch{0}{6-\lambda}= [/mm]

[mm] \bruch{6-\lambda}{6-\lambda}= [/mm]

[mm] \bruch{3}{6-\lambda} [/mm]

[mm] \bruch{-1}{6-\lambda} [/mm]

Steffi



Bezug
                                                        
Bezug
Inverse Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Do 14.02.2008
Autor: Marcel

Hallo,

damit Du meinen Rechenweg auch nachvollziehen kannst:

Die 4 Gleichungen

(I)    $a+2c=1$

(II)   $b+2d=0$

(III) $ [mm] 3a+\lambda\cdot{}c=0 [/mm] $

(IV) $ [mm] 3b+\lambda [/mm] d=1 $

entstanden aus der Forderung [mm] $A*A^{-1}=\pmat{1 & 0 \\ 0 & 1}$, [/mm] wobei wir $a,b,c,d$ gesucht haben, um [mm] $A^{-1}$ [/mm] angeben zu können.

(Du weißt doch sicherlich, wie man Matrizen miteinander multipliziert, da solltest Du eigentlich sehen, wie diese 4 Gleichungen entstanden sind?!)

Aus $3*$(I)-(III) folgt [mm] $(6-\lambda)*c=3$, [/mm] also [mm] $c=\frac{3}{6-\lambda}$ [/mm] und damit [mm] $a=1-\frac{6}{6-\lambda}=\frac{-\lambda}{6-\lambda}$. [/mm]

$3*$(II)-(IV) liefert [mm] $(6-\lambda)d=-1$ [/mm] und damit [mm] $d=\frac{-1}{6-\lambda}$ [/mm] und damit [mm] $b=-2d=\frac{2}{6-\lambda}$, [/mm] also insgesamt

[mm] $A^{-1}=\pmat{a & b\\ c & d}=\frac{1}{6-\lambda}\pmat{-\lambda & 2\\ 3 & -1 }$ [/mm]

Zur Kontrolle:
[mm] $\pmat{1 & 2 \\ 3 & \lambda}*\pmat{-\lambda & 2\\ 3 & -1 }=\pmat{-\lambda+6 & 0 \\0 & 6-\lambda}=(6-\lambda)*\pmat{1&0\\0&1}$ [/mm]

P.S.:
Es kann ja sein, dass Dir Steffis Weg besser gefällt, weil ihr dieses Schema so gelernt habt, aber diese Rechnung hier solltest Du eigentlich nachvollziehen können, denn es mag ja gut sein, wenn man nach einem Schema zu rechnen weiß, aber ich finde es um einiges wichtiger, zu wissen, was man da rechnet und warum man das so rechnen darf, dann kann man sich bei "großen" Rechnungen immer noch überlegen, ob man nicht selbst ein Schema entwickelt oder ggf. nachschlägt, wie man das "übersichtlicher" lösen kann (und hier gibt es offensichtliche Zusammenhänge zwischen meiner Rechnung und Steffis, wäre auch schlimm, wenn's nicht so wäre ;-)).
Natürlich gilt das obige Ergebnis nur für [mm] $\lambda \not=6$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]