matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInverse Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Inverse Matrix
Inverse Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix: über Determinante
Status: (Frage) beantwortet Status 
Datum: 19:13 So 10.06.2007
Autor: Max80

Aufgabe
Berechnen Sie die Inverse der folgenden Matrix:

[mm] \pmat{ -3 & 2 \\ -4 & 3 } [/mm]

Hallo @all.

Das Problem der Aufgabe ist, wir sollen das NICHT über Gauß-Algorithmus machen. An der Stelle bin ich mehr als überfragt. Über das Internet habe ich folgende Formel gefunden:

[mm] A^{-1} [/mm] = [mm] \bruch{1}{det A} [/mm] ad(A)

leider war keine Erklärung dabei. Ist die Formel überhaupt nützlich für die Aufgabe oben? Und was muss man hier machen?


danke!!
-bunti

        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 So 10.06.2007
Autor: schachuzipus

Hallo Bunti,

jo, ist nützlich

nehmen wir mal ne beliebige [mm] $2\times [/mm] 2$-Matrix

[mm] $A=\pmat{ a & b \\ c & d }$ [/mm]

Dann ist [mm] $A^{-1}=\frac{1}{det(A)}\cdot{}\pmat{ d & -b \\ -c & a }$ [/mm]

Und die Determinante einer [mm] $2\times [/mm] 2$-Matrix kann man ja leicht berechnen.


Gruß

schachuzipus

Bezug
                
Bezug
Inverse Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 So 10.06.2007
Autor: schachuzipus

Hi,

hier ist ne Erklärung mitsamt HErleitung aus der Cramershen Regel:
(aber knapp gehalten)

[]http://de.wikipedia.org/wiki/Regul%C3%A4re_Matrix


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]