matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenInverse Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Inverse Funktion
Inverse Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Mi 26.05.2010
Autor: puschel89

Aufgabe
Sei [mm] f:\IR^2 \mapsto \IR^2 [/mm] definiert durch:

f(x) = [mm] \vektor{e^{x_{1}} cos x_2\\ e^{x_{1}} sin x_2} [/mm]

a) Bestimmen Sie f'(x) und zeigen Sie, dass f'(x) für alle x [mm] \in \IR^2 [/mm] invertierbar, f aber nicht injektiv ist.
b) Zeigen Sie für D = [mm] \IR \times (-\pi, \pi), [/mm] dass f: D [mm] \mapsto \IR^2 [/mm] injektiv ist, und bestimmen Sie f(D). Berechnen Sie die inverse Funktion [mm] f^{-1}: [/mm] f(D) [mm] \mapsto [/mm] D und deren Ableitung.

Hallo,

ich habe mal wieder ein Problem mit einer Aufgabe.
Teil a) habe ich noch einigermaßen problemlos hinbekommen, auch der 1. Teil von b), die Injektivität zu zeigen, war vergleichsweise einfach - vorausgesetzt es ist richtig.^^

Jetzt scheitere ich allerdings bei der Berechnung von f(D), da mir die Schreibweise [mm] \IR \times (-\pi, \pi) [/mm] nicht sehr viel sagt. Ich dachte es bedeutet einfach, dass ich die Funktion einfach in dem Intervall betachten muss, aber wie ich da jetzt was berechnen soll ist mir schleierhaft.

Wäre nett, wenn mir jemand helfen könnte. :)

        
Bezug
Inverse Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Do 27.05.2010
Autor: fred97


> Sei [mm]f:\IR^2 \mapsto \IR^2[/mm] definiert durch:
>  
> f(x) = [mm]\vektor{e^{x_{1}} cos x_2\\ e^{x_{1}} sin x_2}[/mm]
>  
> a) Bestimmen Sie f'(x) und zeigen Sie, dass f'(x) für alle
> x [mm]\in \IR^2[/mm] invertierbar, f aber nicht injektiv ist.
>  b) Zeigen Sie für D = [mm]\IR \times (-\pi, \pi),[/mm] dass f: D
> [mm]\mapsto \IR^2[/mm] injektiv ist, und bestimmen Sie f(D).
> Berechnen Sie die inverse Funktion [mm]f^{-1}:[/mm] f(D) [mm]\mapsto[/mm] D
> und deren Ableitung.
>  Hallo,
>  
> ich habe mal wieder ein Problem mit einer Aufgabe.
>  Teil a) habe ich noch einigermaßen problemlos
> hinbekommen, auch der 1. Teil von b), die Injektivität zu
> zeigen, war vergleichsweise einfach - vorausgesetzt es ist
> richtig.^^
>  
> Jetzt scheitere ich allerdings bei der Berechnung von f(D),
> da mir die Schreibweise [mm]\IR \times (-\pi, \pi)[/mm] nicht sehr
> viel sagt.


Merkwürdig !!!!   Wie hast Du dann die Injektivität auf D hinbekommen ????

[mm]\IR \times (-\pi, \pi)= \{(x_1,x_2) \in \IR^2: x_2 \in (-\pi, \pi) \}[/mm]

FRED


> Ich dachte es bedeutet einfach, dass ich die
> Funktion einfach in dem Intervall betachten muss, aber wie
> ich da jetzt was berechnen soll ist mir schleierhaft.
>  
> Wäre nett, wenn mir jemand helfen könnte. :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]