Intervallschachtelung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:55 So 11.11.2012 | Autor: | Andy_18 |
Aufgabe | Seien 0 < a < b positive reelle Zahlen. Für [mm] n\in\IN [/mm] werden Intervalle [mm] I_n [a_n [/mm] , [mm] b_n [/mm] ] durch [mm] I_1 [/mm] := [ [mm] a_1 [/mm] , [mm] b_1 [/mm] ] = [a,b] und
[mm] a_n+1 [/mm] := [mm] H(a_n [/mm] , [mm] b_n [/mm] ) , [mm] b_n+1 [/mm] := [mm] A(a_n [/mm] , [mm] b_n [/mm] )
Rekursiv definiert. Wobei H(x,y) := [mm] \bruch{2xy}{x+y} [/mm] das harmonische Mittel und A(x,y) := [mm] \bruch{x+y}{2} [/mm] das arithmetische mittel der beiden Zahlen [mm] x,y\in\IR_+ [/mm] bezeichnen
a) Zeigen Sie, dass die Intervalle [mm] I_n [/mm] eine Intervallschachtelung bilden.
b) Zeigen Sie, dass [mm] \wurzel{ab}\in\{I_n} [/mm] für alle [mm] n\in\IN [/mm] (Hinweis: Betrachten Sie das Produkt aus dem harmonischen und dem arithmetischen Mittel). |
Zu teilaufgabe a) hab ich schon gezeigt, dass [mm] a_n+1 [/mm] > [mm] a_n [/mm] und dass [mm] b_n+1 [/mm] < [mm] b_n [/mm] ist. Jetzt muss ich aber ja noch zeigen, dass [mm] |I_n [/mm] | gegen 0 geht und genau daran häng ich gerade fest. Ich hab einfach schonmal probiert [mm] b_n [/mm] - [mm] a_n [/mm] := A( [mm] a_n-1 [/mm] , [mm] b_n-1 [/mm] ) und H( [mm] a_n-1 [/mm] , [mm] b_n-1 [/mm] ) zu definieren aber das hat mich nicht wirklich weitergebracht. Wäre sehr dankbar natürlich auch über Lösungsvorschläge :D aber auch über Denkanstöße wie ich dies zeigen kann.
Zu b) hab ich das Produkt angeschaut was bei ab ist. Was hilft mir das jetzt aber im Bezug auf die in allen Intervallen enthaltene reelle Zahl [mm] \wurzel{ab}
[/mm]
Viele Grüße, Andy
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:10 Mo 12.11.2012 | Autor: | rainerS |
Hallo Andy!
> Seien 0 < a < b positive reelle Zahlen. Für [mm]n\in\IN[/mm] werden
> Intervalle [mm]I_n [a_n[/mm] , [mm]b_n[/mm] ] durch [mm]I_1[/mm] := [ [mm]a_1[/mm] , [mm]b_1[/mm] ] =
> [a,b] und
> [mm]a_n+1[/mm] := [mm]H(a_n[/mm] , [mm]b_n[/mm] ) , [mm]b_n+1[/mm] := [mm]A(a_n[/mm] , [mm]b_n[/mm] )
> Rekursiv definiert. Wobei H(x,y) := [mm]\bruch{2xy}{x+y}[/mm] das
> harmonische Mittel und A(x,y) := [mm]\bruch{x+y}{2}[/mm] das
> arithmetische mittel der beiden Zahlen [mm]x,y\in\IR_+[/mm]
> bezeichnen
>
> a) Zeigen Sie, dass die Intervalle [mm]I_n[/mm] eine
> Intervallschachtelung bilden.
> b) Zeigen Sie, dass [mm]\wurzel{ab}\in\{I_n}[/mm] für alle [mm]n\in\IN[/mm]
> (Hinweis: Betrachten Sie das Produkt aus dem harmonischen
> und dem arithmetischen Mittel).
> Zu teilaufgabe a) hab ich schon gezeigt, dass [mm]a_n+1[/mm] > [mm]a_n[/mm]
> und dass [mm]b_n+1[/mm] < [mm]b_n[/mm] ist. Jetzt muss ich aber ja noch
> zeigen, dass [mm]|I_n[/mm] | gegen 0 geht und genau daran häng ich
> gerade fest. Ich hab einfach schonmal probiert [mm]b_n[/mm] - [mm]a_n[/mm] :=
> A( [mm]a_n-1[/mm] , [mm]b_n-1[/mm] ) und H( [mm]a_n-1[/mm] , [mm]b_n-1[/mm] ) zu definieren
> aber das hat mich nicht wirklich weitergebracht.
Das verstehe ich gerade nicht; es kommt doch sofort
[mm]b_n-a_n = A(a_{n-1},b_{n-1}) -H (a_{n-1},b_{n-1}) = \bruch{1}{2}(b_{n-1}-a_{n-1})[/mm]
heraus.
> Zu b) hab ich das Produkt angeschaut was bei ab ist. Was
> hilft mir das jetzt aber im Bezug auf die in allen
> Intervallen enthaltene reelle Zahl [mm]\wurzel{ab}[/mm]
Der Punkt ist doch, dass
[mm] a_nb_n = a_{n-1}b_{n-1}[/mm]
ist, und damit für alle n $=ab$ ist.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:10 Mo 12.11.2012 | Autor: | Andy_18 |
Ah okay, und ist mit [mm] b_n [/mm] - [mm] a_n [/mm] = [mm] \bruch{1}{2} b_n [/mm] - [mm] a_n [/mm] dann schon bewiesen dass die imtervslllängr gegen 0 geht? Des Ergebnis hatte ich nämlich gestern auch schonmal und wusste dann nichts weiter damit anzufangen.. :p
Und zum zweiten Teil. Ja genau das Produkt ist Dann immer ab. Aber ich komm gerade nicht dahinter wie ich davon dazu komme dass eben genau die [mm] \wurzel{ab} [/mm] die vom Intervall definierte reelle Zahl ist
Grüße Andy :)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:05 Mo 12.11.2012 | Autor: | fred97 |
> Ah okay, und ist mit [mm]b_n[/mm] - [mm]a_n[/mm] = [mm]\bruch{1}{2} b_n[/mm] - [mm]a_n[/mm]
> dann schon bewiesen dass die imtervslllängr gegen 0 geht?
> Des Ergebnis hatte ich nämlich gestern auch schonmal und
> wusste dann nichts weiter damit anzufangen.. :p
Zeige mit Induktion: [mm] b_n-a_n=\bruch{1}{2^{n-1}}(b-a)
[/mm]
>
> Und zum zweiten Teil. Ja genau das Produkt ist Dann immer
> ab. Aber ich komm gerade nicht dahinter wie ich davon dazu
> komme dass eben genau die [mm]\wurzel{ab}[/mm] die vom Intervall
> definierte reelle Zahl ist
Mit Induktion: [mm]\wurzel{ab}[/mm] [mm] \in I_n [/mm] für alle n.
FRED
>
> Grüße Andy :)
|
|
|
|