Intervall < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:36 Sa 08.12.2007 | Autor: | coolman |
Aufgabe | Seien I und J Intervallle auf den reelen Zahlen
Zeigen sie, ist die Schnittmenge von I und J nicht die leere Menge, dann
bildetI vereinigt mit J weider ein neues Intervall |
Ich habe mir die Aufgabe graphisch veranschaulicht und sei auch verstanden . Allerdinsg weiß ich nicht wie ich es mathematisch in Worte fassen soll.
Kann mir jem einen Lösungsansatz geben?
danke im voraus
|
|
|
|
> Seien I und J Intervallle auf den reelen Zahlen
> Zeigen sie, ist die Schnittmenge von I und J nicht die
> leere Menge, dann
> bildetI vereinigt mit J weider ein neues Intervall
> Ich habe mir die Aufgabe graphisch veranschaulicht und sei
> auch verstanden . Allerdinsg weiß ich nicht wie ich es
> mathematisch in Worte fassen soll.
> Kann mir jem einen Lösungsansatz geben?
Ein direkter Beweis würde in etwa so beginnen: Sei [mm] $I\cap J\neq \emptyset$. [/mm] Dann existiert also ein [mm] $x_0\in I\cap [/mm] J$. Zu zeigen: [mm] $I\cup [/mm] J$ ist ein Intervall, d.h. für alle [mm] $x_1,x_2\in I\cup [/mm] J$ mit [mm] $x_1< x_2$ [/mm] und für alle $x$ mit [mm] $x_1< x
Bei einem indirekten Beweis würdest Du andererseits die Annahme, dass [mm] $I\cup [/mm] J$ kein Intervall sei, zu einem Widerspruch zur Voraussetzung, dass [mm] $I\cap J\neq [/mm] 0$ ist, führen. Denn wären [mm] $x_1,x_2\in I\cup [/mm] J$ und gäbe es ein [mm] $x\notin I\cup [/mm] J$ mit [mm] $x_1
Ich habe das Gefühl, ein indirekter Beweis ist hier einfacher: Nehmen wir an, es wäre [mm] $I\cap J\neq \emptyset$, [/mm] aber [mm] $I\cup [/mm] J$ kein Intervall. Dann gibt es [mm] $x_1,x_2\in I\cup [/mm] J$ und ein [mm] $x_0\notin I\cup [/mm] J$ mit [mm] $x_1
Ist nun [mm] $x_1\in [/mm] I$ so folgt daraus, dass alle Elemente von $I$ kleiner als [mm] $x_0$ [/mm] sind und alle Elemente von $J$ grösser als [mm] $x_0$: [/mm] also würde [mm] $I\cap J=\emptyset$ [/mm] folgen, im Widerspruch zur Voraussetzung, dass [mm] $I\cap J\neq\emptyset$.
[/mm]
Wäre, andererseits, [mm] $x_1\in [/mm] J$ so würde folgen, dass alle Elemente von $J$ kleiner als [mm] $x_0$ [/mm] sind und alle Elemente von $I$ grösser als [mm] $x_0$: [/mm] also würde auch in diesem Falle folgen, dass [mm] $I\cap J=\emptyset$, [/mm] im Widerspruch zur Annahme, dass [mm] $I\cap J\neq \emptyset$.
[/mm]
|
|
|
|