Interpolationsfehler < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 21:22 Do 19.10.2006 | Autor: | Janyary |
Aufgabe | Sei [mm] p_{n} [/mm] das mit den Stuetzstellen [mm] x_{k}=\bruch{k}{n}, [/mm] k=0,...,n gebildete Interpolationspolynom zur Funktion [mm] f(x)=e^{x}. [/mm] Leite eine Abschaetzung fuer den maximalen Interpolationsfehler
[mm] max|e^{x}-p(x)| [/mm] fuer [mm] 0\le [/mm] x [mm] \le [/mm] 1
her und bestimme das kleinste n, fuer das der Fehler garantiert kleiner als [mm] 10^{-6} [/mm] ist.
Hinweis: Zeige zuerst, dass [mm] max|(x-\bruch{k}{n})*(x-\bruch{n-k}{n})|\le \bruch{1}{4} [/mm] fuer 0 [mm] \le [/mm] k [mm] \le [/mm] n und [mm] 0\le x\le [/mm] 1 gilt. |
hi ihr lieben,
wir haben gerade erst mit numerik angefangen und ich komm mit der aufgabe ueberhaupt nicht klar.
die einzige formel die wir im zusammenhang mit interpolationsfehlern aufgeschrieben haben lautet:
[mm] f(x)=p(x)+\bruch{f^{n+1}(\lambda)}{(n+1)!}*(x-x_{0})*...*(x-x_{n})
[/mm]
dabei ist [mm] f^{n+1} [/mm] die n+1-te ableitung und [mm] \lambda [/mm] aus dem intervall ueber das interpoliert werden soll. [mm] x_{0}, [/mm] ..., [mm] x_{n} [/mm] sind die stuetzstellen fuer das interpolationspolynom.
ich weiss leider ueberhaupt nicht so genau, wie ich an so eine aufgabe ran gehen soll.
man soll ja zuerst zeigen, dass
[mm] max|(x-\bruch{k}{n})*(x-\bruch{n-k}{n})|\le \bruch{1}{4} [/mm] fuer 0 [mm] \le [/mm] k [mm] \le [/mm] n und [mm] 0\le x\le [/mm] 1 gilt.
hab versucht das so abzuschaetzen:
[mm] max|\underbrace{(x-\bruch{k}{n})}_{A}*\underbrace{(x-\bruch{n-k}{n})}_{B}|
[/mm]
fuer k gegen n ist A=(x-1) und B=x
also muesste ich jetzt nur noch max|(x-1)*x| fuer [mm] 0\le [/mm] x [mm] \le [/mm] 1 abschaetzen.
und da fuer [mm] x=\bruch{1}{2} [/mm] das ganze maximal wird gilt:
[mm] max|(x-1)*x|\le\bruch{1}{4} [/mm] fuer [mm] 0\le [/mm] x [mm] \le [/mm] 1.
ist das erstmal soweit ok?
oki jetzt zur hauptaufgabe:
[mm] f(x)-p(x)=\underbrace{\bruch{f^{n+1}(\lambda)}{(n+1)!}*(x-x_{0})*...*(x-x_{n})}_{R}
[/mm]
der mit R bezeichnete Term ist ja mein Interpolationsfehler fuer den ich das n berechnen soll, so dass er nicht groesser [mm] 10^{-6} [/mm] ist.
[mm] R=\underbrace{\bruch{f^{n+1}(\lambda)}{(n+1)!}}_{C}*\underbrace{(x-x_{0})*...*(x-x_{n})}_{D}
[/mm]
Ich denke, dass mir die maximumsabschaetzung mit dem [mm] \bruch{1}{4} [/mm] hilf den Term D abzuschaetzen. habe aber noch nicht rausgefunden in wie fern.
C ist ja die n+1-te Ableitung meiner funktion dividiert durch die n+1-te Fakultaet.
Also [mm] C=\bruch{e^{\lambda}}{(n+1)!}
[/mm]
Es muss also gelten [mm] C*D\le10^{-6}
[/mm]
Hab jetzt folgende Idee
Ich nehme fuer D einfach mal [mm] \bruch{1}{4} [/mm] an. das bringt mich zu der gleichung [mm] \bruch{e^{\lambda}}{(n+1)!}*\bruch{1}{4}\le10^{-6}
[/mm]
das dann nach n umgestellt: [mm] \bruch{e^{\lambda}}{4*10^{-6}}\le(n+1)! [/mm] fuer [mm] 0\le\lambda\le1
[/mm]
da fuer [mm] \lambda=1 [/mm] die linke Seite maximal wird, habe ich nun einfach durch probieren das n berechnet und bin auf n=8 gekommen.
oki, wie schauts mit meiner loesung aus? ist die idee erstmal richtig? und wenn meine vermutung stimmt, dass ich den Term D mit [mm] \bruch{1}{4} [/mm] nach oben abschaetzen kann. warum ist das so? Wenn ich mit meiner loesung total daneben liege, waere ich echt dankbar, wenn mir jemand tipps zur loesung solcher aufgaben geben koennte.
LG Jany :)
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Mo 23.10.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|