matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikInterpolationsfehler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Interpolationsfehler
Interpolationsfehler < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Interpolationsfehler: Aufgabe
Status: (Frage) überfällig Status 
Datum: 19:18 Fr 01.04.2016
Autor: Yomu

Aufgabe
Sei f eine n-mal differenzierbare Funktion, fuer die [mm] f(x_{i}) [/mm] = [mm] y_{i} [/mm] gilt. Der ¨
Interpolationsfehler R(x) = f(x) − L(x) (L ist Polynom vom Grad n-1) ist durch

[mm] R(x)=\bruch{f^{n}(\nu)}{!n}*\produkt_{i=1}^{n}(x-x_{i}) [/mm]
fuer [mm] x_{1} \le \nu \le x_{n} [/mm]
gegeben, falls die xi aufsteigend geordnet sind. Wo muss man die (zwei) Stuetzstellen [mm] x_{i} [/mm] waehlen, so dass
die Funktion f : x → sin(x) auf dem Intervall [0, [mm] \pi] [/mm] in der Maximumnorm, also punktweise moeglichst
genau durch ein Polynom ersten Grades interpoliert wird?

Hallo,
Ich bin grad in der Numerik-Pruefungsvorbereitung, da hab ich diese Aufgabe gefunden, die unter "Aufgaben die man ohne Probleme loesen koennen sollte" faellt.
Allerdings hab ich damit Probleme:

Ich soll also [mm] x_{1},x_{2} [/mm] finden die den Ausdruck

[mm] \max_{x}(|\bruch{-sin(\nu)}{2}*(x-x_{1})(x-x_{2})|) [/mm]

minimieren, es gilt aber

[mm] |\bruch{-sin(\nu)}{2}*(x-x_{1})(x-x_{2})| \le \bruch{|sin(\nu)|}{2}*|\pi^{2}| [/mm]
mit [mm] x_{1} \le \nu \le x_{n} [/mm]
wenn ich jetzt [mm] x_{1}=0 [/mm] waehle und [mm] x_{2} [/mm] gegen Null gehen lasse dann geht [mm] sin(\nu) [/mm] gegen Null und somit auch der Fehler.

Es waere zwar schoen wenn sich sinus durch Polynome ersten Grades annaehern lassen wuerde, aber ich glaube eher dass ich was falsch verstanden habe..

        
Bezug
Interpolationsfehler: Unklarheiten
Status: (Antwort) fertig Status 
Datum: 12:47 Sa 02.04.2016
Autor: Al-Chwarizmi


> Sei f eine n-mal differenzierbare Funktion, fuer die
> [mm]f(x_{i})[/mm] = [mm]y_{i}[/mm] gilt. Der ¨
>  Interpolationsfehler R(x) = f(x) − L(x) (L ist Polynom
> vom Grad n-1) ist durch
>  
> [mm]R(x)=\bruch{f^{n}(\nu)}{!n}*\produkt_{i=1}^{n}(x-x_{i})[/mm]
>  fuer [mm]x_{1} \le \nu \le x_{n}[/mm]
>  gegeben, falls die xi
> aufsteigend geordnet sind. Wo muss man die (zwei)
> Stuetzstellen [mm]x_{i}[/mm] waehlen, so dass
>  die Funktion f : x → sin(x) auf dem Intervall [0, [mm]\pi][/mm]
> in der Maximumnorm, also punktweise moeglichst
>  genau durch ein Polynom ersten Grades interpoliert wird?
>  Hallo,
>  Ich bin grad in der Numerik-Pruefungsvorbereitung, da hab
> ich diese Aufgabe gefunden, die unter "Aufgaben die man
> ohne Probleme loesen koennen sollte" faellt.
>  Allerdings hab ich damit Probleme:
>  
> Ich soll also [mm]x_{1},x_{2}[/mm] finden die den Ausdruck
>  
> [mm]\max_{x}(|\bruch{-sin(\nu)}{2}*(x-x_{1})(x-x_{2})|)[/mm]
>  
> minimieren, es gilt aber
>  
> [mm]|\bruch{-sin(\nu)}{2}*(x-x_{1})(x-x_{2})| \le \bruch{|sin(\nu)|}{2}*|\pi^{2}|[/mm]
> mit [mm]x_{1} \le \nu \le x_{n}[/mm]
>  wenn ich jetzt [mm]x_{1}=0[/mm] waehle
> und [mm]x_{2}[/mm] gegen Null gehen lasse dann geht [mm]sin(\nu)[/mm] gegen
> Null und somit auch der Fehler.
>  
> Es waere zwar schoen wenn sich sinus durch Polynome ersten
> Grades annaehern lassen wuerde, aber ich glaube eher dass
> ich was falsch verstanden habe..


Hallo Yomu,

da ist mir einiges nicht ganz klar.

1.)  Es wird nicht klar, was mit den [mm] x_i [/mm] gemeint sein soll. Ich nehme
an, dass es sich um gewisse (verschiedene !) x-Werte handeln soll.
Aber: welche Werte soll der Index i annehmen ?

2.)  Wofür steht das  [mm] \nu [/mm]  ?

3.)  Was meinst du mit  !n  ?

4.)  Im Ausdruck  $ [mm] \max_{x}(|\bruch{-sin(\nu)}{2}\cdot{}(x-x_{1})(x-x_{2})|) [/mm] $
rechnest du offenbar mit einer quadratischen Näherungsfunktion.
Gefragt war aber doch eine lineare Approximation ...

LG  ,    Al-Chwarizmi

Bezug
                
Bezug
Interpolationsfehler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:26 Sa 02.04.2016
Autor: Yomu

Achso Entschuldigung, ich haette wohl noch erwaehnen sollen dass es sich um Polynominterpolation handelt, mit den Stuetzstellen x1,..,xn .
die oben gegebene Formel beschreibt dann (nach Aufgabenstellung) den Fehler der fuer ein [mm] \nu [/mm] zwischen [mm] x_{1} [/mm] und [mm] x_{n} [/mm] angenommen wird.

3.) es sollte n! , also Fakultaet von n sein.
4.) Wie gesagt, das ist die Maximumsnorm der gegebenen Fehlergleichung zwischen dem Polynom 1. Grades L(x), welches aus der Interpolation entsteht, und der Ausgangsfunktion sin(x),
also [mm] \max_{x}|R(x)|=\max_{x}|L(x)-sin(x)| [/mm]

gesucht sind die optimalen Stuetzstellen [mm] x_{1},x_{2}, [/mm] also die fuer welche [mm] \max_{x}|R(x)| [/mm] moeglichst klein wird.

Bezug
        
Bezug
Interpolationsfehler: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 03.04.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]