matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegrierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Integrierbarkeit
Integrierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierbarkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 11:54 Di 05.07.2005
Autor: holg47

Hallo!

Ich hätte eine Frage bezüglich Integrierbarkeit:

Es sei eine Funktion f gegeben, mit:
f: [mm] \IR^n \to \IR [/mm]
Ist die Behauptung richtig:
f sei integrierbar [mm] \to [/mm] f sei absolut integrierbar. Aber die Umkehrung gilt i.a. nicht??  Oder lieg ich da falsch und es gilt aus absoluter Integrierbarkeit folgt integrierbar?

Vielen Dank!

        
Bezug
Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Di 05.07.2005
Autor: felixs


> Es sei eine Funktion f gegeben, mit:
>  f: [mm]\IR^n \to \IR[/mm]
>  Ist die Behauptung richtig:
>  f sei integrierbar [mm]\to[/mm] f sei absolut integrierbar. Aber
> die Umkehrung gilt i.a. nicht??  Oder lieg ich da falsch
> und es gilt aus absoluter Integrierbarkeit folgt
> integrierbar?

hallo.
ich nehme mal an du  meinst mit absolut integrierbar sowas wie
$|f|$ messbar und $ [mm] \int [/mm] |f| < [mm] \infty [/mm] $.

jetzt nimmst du dir ein beschraenktes (echtes) intervall I und eine nicht mb menge $S [mm] \subset [/mm] I [mm] \subset \mathbb{R}$ [/mm] und definierst
$n=1$, $f = [mm] (-1)^{\chi_S} \cdot \chi_I [/mm] $. dass es so ein S gibt setze ich mal voraus (hat irgendwas mit auswahlaxiom zu tun :).
jetzt hast du aber $|f| = [mm] \chi_I [/mm] $ messbar aber $f$ nicht messbar also auch nicht intbar.
hoffe das stimmt so ungefaehr.
gruss
--felix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]