matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrationsrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integrationsrechnung
Integrationsrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationsrechnung: Korrektur und Frage
Status: (Frage) beantwortet Status 
Datum: 20:07 Fr 30.03.2007
Autor: fidelio

Aufgabe
rechne folgende integralrechnung.....

hallo und schönen abend an alle,

folgendes problem stellt sich mir bei folgender integralrechnung......

[mm] \integral_{a}^{b}{f(x) dx}=\bruch{12}{(2x-5)^3}dx=12\*\bruch{(2x-5)^{-3+1}}{-3+1}=12\*\bruch{(2x-5)^{-2}}{-2}=-\bruch{12}{2}\*\bruch{1}{(2x-5)^2}=-6\*\bruch{1}{(2x-5)^2}+C [/mm]

soweit war ich der meinung ich bin richtig mit meiner rechnung......bis ich dann im lösungsheft nachgesehen habe und da stand dann folgendes:


[mm] \integral_{a}^{b}{f(x) dx}=\bruch{12}{(2x-5)^3}dx=\bruch{12}{2\*(x-2,5)^3} [/mm]  ....... usw...... die rechnung will ich jetzt nicht abschreiben......aber mein ergebnis stimmt mit dem vom buch LEIDER nicht überein und ich verstehe nicht warum die gerade bei DIESEM beispiel 2 herausgehoben haben!?!?!?!?!......bei anderen beispielen wo man auch einen wert herausheben hätte können haben die das aber nicht gemacht!!???

ich erkenne nicht warum die das so machen!!!!

als information noch am rande wenn ich für den wert x eine beliebige ziffer in mein resultat einsetze bekomme ich immer das doppelte von dem resultat aus dem lösungsheft heraus!!

bitte um eure wie immer geschätzte mithilfe da ich da leider kein licht am ende des tunnels sehe.

danke im voraus

fidelio


        
Bezug
Integrationsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Fr 30.03.2007
Autor: Kroni

Hi,

die 2 können die Autoren nicht herauszihene, wenn dann nur eine [mm] 2^3 [/mm] (s.h. Post von Norber)

Gucken wir also mal, warum du immer das doppelte Herausbekommst, als es die Lösung vorgibt:
Wenn du die 2 noch als Faktor vor dem x stehen lässt, und dann einfach sagst, dass die Stammfunktion von [mm] (2x)^{-3}=-\bruch{1}{2}*(2x)^{-2} [/mm] ist, dann hast du nicht beachtet, dass es noch eine innere Ableitung gibt:

Leite mal [mm] -\bruch{1}{2}*(2x)^{-2} [/mm] ab, und du siehst:
[mm] (2x)^{-3} [/mm] * Innere Ableitung! => [mm] (2x)^{-3}*2 [/mm]
Deine Funktion, die du integrieren solltest hatte aber (vereinfacht) die Form [mm] (2x)^{-3}. [/mm]
D.h., da ist der Faktor 2 zu viel. Um diesen zu beseitigen, musst du die dann sagen, dass die SF zu [mm] (2x)^{-3} [/mm] gleich [mm] 0,5*(-\bruch{1}{2})*(2x)^{-2} [/mm] lautet, denn dann fällt die 2 der inneren Ableitung durch den Faktor 0,5 weg.

Damit du diese Überlegung aber einfach umgehen kannst, zieht der Autor einfach die 8 aus der Klammer heraus, und sorgt damit dafür, dass die innere Ableitung der Klammer gleich Eins ist. Dadurch entfällt dann eine solche Überlegung.

In deinem Fall aber zusammengefasst, wo die 2 noch in der Klammer steht, musst du die Stammfunktion noch "zurechtbügeln", indem du den Faktor 0,5 davorhängst.
Das erklärt dann auch, warum bei deinen Ergebnissen, wenn du die Integrationsgrenzen einsetzt, immer das doppelte herauskommt, als es das Lösungsbuch sagt, da du den Faktor 0,5 vergessen hast, der dann also dein Ergebnis halbieren würde.

Das ergibt dann in deinem Fall:

[mm] \integral_{}^{}{\bruch{12}{(2x-5)^3} dx}=12*\integral_{}^{}{(2x-5)^{-3}}dx=12*(-1/2)*(2x-5)^{-2}*0,5=-3*(2x-5)^{-2} [/mm]


Viele Grüße,

Kroni

Und PS: Sry, ich stand heute etwas neben mir....

Tut mir leid

Bezug
        
Bezug
Integrationsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Fr 30.03.2007
Autor: nsche

Das Herausziehen des Faktors 2 erscheint mir zweifelhaft.
[mm] (2x-5)^{3} = (2 (x-2,5))^{3} = 2^{3}*(x-2,5)^{3}[/mm]

vG
Norbert

ich rechne mal:

[mm] \integral_{a}^{b}{\bruch{12}{(2x-5)^{3}} dx} = [/mm]
[mm] \integral_{a}^{b}{\bruch{12}{2^{3}(x-2,5)^{3}} dx} = [/mm]
[mm]\bruch{3}{2}\integral_{a}^{b}{\bruch{dx}{(x-2,5)^{3}}} [/mm]

Sub: [mm] t=\phi (x) = x-2,5; \bruch{dt}{dx} = \phi '(x)=1; dt = dx [/mm]
[mm]\bruch{3}{2} \integral_{a}^{b}{\bruch{dt}{t^{-3}}} = \bruch{3}{2*(-2)} t^{-2}| = \bruch{-3}{4} t^{-2}| [/mm]

resub:
[mm] \integral_{a}^{b}{\bruch{12}{(2x-5)^{3}} dx} = \bruch{-3}{4} (x-2,5)^{-2} | [/mm]

Wenn ich das Ergebnis differenziere, erhalte ich den Integranden. was mich beruhigt
vG
Norbert

Bezug
                
Bezug
Integrationsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Fr 30.03.2007
Autor: Kroni

Hi,

hast Recht Norbert, ich hätte mal vlt. darüber nachdenken sollen, ob das überhaupt so okay ist, die 2 dort rauszuziehen....

Heute ist wohl nicht mein Tag^^

Sláin,

Kroni


Sry, sollte keine Frage werden...wie gesagt, heute bin ich echt durch den Wind..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]