matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrationsgrenzen Volumenint
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integrationsgrenzen Volumenint
Integrationsgrenzen Volumenint < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationsgrenzen Volumenint: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Do 30.07.2009
Autor: Tobus

Aufgabe
1) [mm] \delta [/mm] v dV = [mm] \integral_{r=0}^{1}{}\integral_{\nu=0}^{\bruch{\pi}{2}}{}\integral_{\delta=0}^{\bruch{\pi}{2}}{r^{2}*sin(\nu) dr d\nu d\delta} [/mm]

2) Gegeben sei ein Körper durch die Flächen
e: z-1
[mm] g(x,y,z)=-x^{2}-y^{2}+z=0 [/mm]
Berechnen sie sein Volumen

Hallo, ich hab für die morgige Klausur noch ein paar Fragen. Ich hoffe ihr könnt mir da helfen.

1)
Hier weiß ich nicht, wie ich auf die Integrationsgrenzen komme. In der Aufgabe sind die nicht gegeben, ich muss diese also ausrechnen, aber wie ?

2) Volumenintegral:
Grenzen nach Transformation in Zylinderkoordinaten

[mm] x=r*cos(\delta) [/mm]
[mm] y=r*sin(\delta) [/mm]

[mm] V=\integral_{z=0}^{1}{}\integral_{\delta=0}^{2*\pi}{}\integral_{r=c}^{\wurzel{z}}{r dr d\delta dz} [/mm]

Hier auch wieder meine Frage, wie komme ich auf die Grenzen ?


VIELEN DANK !!!!

        
Bezug
Integrationsgrenzen Volumenint: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Do 30.07.2009
Autor: Andrey

1) Sieht aus wie irgendeine Achtel-Einheitskugel. Der Aufgabenstellung kann man tatsächlich schwer etwas entnehmen, weil sie nicht da ist. Zumindest auf der linken Seite ist beim TeXen anscheinend was schiefgelaufen?

2) Am besten überlegt man sich zuerst, über welchen Körper man hier etwas integrieren muss. Die erste gleichung ist eine Ebenengleichung, das ist einfach eine zur x-y-Ebene parallele Ebene im Abstand 1, das dürfte hoffentlich klar sein. Die zweite Varietät ist offensichtlich ein elliptisches Paraboloid, in diesem Fall einfach die Form, die bei der Rotation der "Normalparabel" um die z-Achse entstehen würde. Beide Flächen unterteilen den Raum jeweils in 2 Teile. Man skizziere oder überlege sich einfach, dass der [mm] \IR^3 [/mm] von diesen beiden Flächen in 4 bereiche zerlegt wird, von den 3 nicht messbar sind, da unendlich groß. Die einzige messbare Menge ist der kleine "Paraboloidstumpf" für z-werte zwischen 0 und 1, das sind auch schon die ersten Integrationsgrenzen. Wenn man das in Zylinderkoordinaten betrachtet, ist es klar, dass man für einen rotationssymmetrischen Paraboloidstumpf über den gesamten Winkel [mm] 0-2\pi [/mm] integrieren muss. Und da [mm] z=r^2 [/mm] gilt, muss man in der r-Richtung von 0 bis [mm] \wurzel[2]{z} [/mm] integrieren. Das kleine "c" war wohl auch ein Tippfehler, imho sollte da 0 stehen? Im integral selbst steht nur noch das Volumenelement für Zylinderkoordinaten, man will ja schließlich nur die Charakteristische Funktion integrieren.

greetz, Andrey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]