matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration von sqrt(x^2+2x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integration von sqrt(x^2+2x)
Integration von sqrt(x^2+2x) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von sqrt(x^2+2x): Idee
Status: (Frage) beantwortet Status 
Datum: 10:54 Sa 16.04.2011
Autor: Dittsche45

Aufgabe
Hallo,

Die Aufgabe [mm] sqrt(x^2 [/mm] + 2x) ist durch Substitution zu lösen.

Ich weiss, dass ich nach sqrt((x-1)²-1) umstellen kann.
Falls dieser Term im Nenner stehen würde, könnte ich die Aufgabe
mit der Substitution u=(x-1) lösen. Habt Ihr eine Idee?

Viele Grüße,

Dittsche45

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration von sqrt(x^2+2x): Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Sa 16.04.2011
Autor: schachuzipus

Hallo Dittsche45,


> Hallo,
>  
> Die Aufgabe [mm]sqrt(x^2[/mm] + 2x) ist durch Substitution zu
> lösen.
>  Ich weiss, dass ich nach sqrt((x-1)²-1) umstellen kann.

Du meinst wohl [mm]\sqrt{(x\red{+}1)^2-1}[/mm]

Das ist eine gute Idee!

Zunächst kannst du das Integral auf [mm]\int{\sqrt{u^2-1} \ du}[/mm] zurückführen mit der linearen Substitution [mm]u=u(x):=x+1[/mm]

Um letzteres zu knacken, erinnere dich an die Beziehung der hyperbolischen Funktionen zueinander, insbesondere [mm]\cosh^2(z)-\sinh^2(z)=1[/mm], also [mm]\sinh^2(z)=\cosh^2(z)-1[/mm]

Außerdem ist [mm]\frac{d}{dz}(\sinh(z))=\cosh(z)[/mm] und umgekehrt.

Damit sollte eine weitere Substitution doch naheliegen.

Dann schlussendlich entstehende Integral kannst du mit partieller Integration vernichten oder indem du die Definition der vorkommenden Funktion(en) einsetzt und dann ausintegrierst.

>  Falls dieser Term im Nenner stehen würde, könnte ich die
> Aufgabe
>  mit der Substitution u=(x-1) lösen. Habt Ihr eine Idee?
>  
> Viele Grüße,
>  
> Dittsche45
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]