matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegration über Untermannigf.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Integration über Untermannigf.
Integration über Untermannigf. < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration über Untermannigf.: Kugelvolumen, Kugeloberfläche
Status: (Frage) beantwortet Status 
Datum: 19:20 Mo 12.01.2015
Autor: Raffael-M

Aufgabe
Sei [mm] B^{3}_{R} [/mm] := [mm] B_{R}(0) [/mm] die dreidimensionale Kugel um den Nullpunkt mit Radius R und [mm] S^{2}_{R} [/mm] := [mm] \partial B^{3}_{R} [/mm] ihre Oberfläche. Wir wissen bereits, dass das Volumen der Kugel durch V(R) = [mm] \bruch{4}{3} \pi R^{3} [/mm]
und ihre Oberfläche durch F(R) = [mm] 4\pi R^{2} [/mm] gegeben ist. Man erkennt, dass F(R) = [mm] \bruch{d}{dR}V(R) [/mm] ist. Warum gilt diese Beziehung?

Hallo,
wir haben im Rahmen unserer Analysis III - Vorlesung mit der Integration über Untermannigfaltigkeiten und mit Integrale über Graphen angefangen.
Ich weiß nicht so recht, wie ich bei dieser Aufgabe vorgehen soll und was hier als Lösung genügt.
Hat vielleicht jemand einen Tipp, wie man hier vorgehen könnte?
Ich bedanke mich schonmal im Vorraus.

MfG Raffael-M
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration über Untermannigf.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mo 12.01.2015
Autor: andyv

Hallo,

nach der Transformationsformel gilt für das Volument der n-dimensionalen Kugel [mm] V(R)=\int_0^R \int_{\partial B_1(0)} r^{n-1} d\sigma(x)dr. [/mm] Führe die Integration aus und leite nach R ab.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]