matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration rationaler Funktio
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integration rationaler Funktio
Integration rationaler Funktio < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration rationaler Funktio: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Sa 15.10.2011
Autor: volk

Aufgabe
[mm] f(x)=\bruch{x^5+5x^4+4x^3-7x^2+4x+17}{x^3+4x^2+x-6} [/mm]

(a) Partialbruchzerlegung von f(x) durchführen
(b) unbestimmtes Integral von f(x) berechnen


Hallo,
ich bin mir nicht sicher, ob ich die Aufgabe richtig gelöst und den Rechenweg korrekt aufgeschrieben habe.

(a)

p(x):= [mm] x^5+5x^4+4x^3-7x^2+4x+17 [/mm]
q(x):= [mm] x^3+4x^2+x-6 [/mm]

Da Grad(p(x)) > Grad(q(x))  => Polynomdivision
Es folgt [mm] f(x)=\bruch{(x^2+x-1)(x^3+4x^2+x-6)+2x^2+11x+11}{x^3+4x^2+x-6}=x^2+x-1+\bruch{2x^2+11x+11}{x^3+4x^2+x-6} [/mm]
Beim Bruch ist jetzt Grad(q(x)) > Grad(p(x))
q(x)=(x-1)(x+2)(x+3)
Damit folgt
[mm] \bruch{2x^2+11x+11}{x^3+4x^2+x-6}=\bruch{A}{x-1}+\bruch{B}{x+2}+\bruch{C}{x+3} [/mm]
Da keine Nullstelle doppelt vorkommt gilt [mm] A_{i}=\bruch{p(a_{i})}{\produkt_{i{\not=}j}^{}(a_{i}-a_{j})} [/mm]
Somit folgt A=2, B=1, C=-1
[mm] \bruch{2x^2+11x+11}{x^3+4x^2+x-6}=\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3} [/mm]
Damit ist das Ergebnis der Partialbruchzerlegung
[mm] f(x)=x^2+x-1+\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3} [/mm]

(b)

[mm] \integral_{}^{}{x^2+x-1+\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3} dx}=\bruch{1}{3}x^3+\bruch{1}{2}x^2-x+2ln(x-1)+ln(x+2)-ln(x+3) [/mm]



Ich habe noch eine Frage zu (a)
Wenn ich jetzt eine doppelte Nullstelle hätte hatten wir den Ansatz [mm] \bruch{3x^2+x}{x^3+x^2-x-1}=\bruch{A}{x-1}+\bruch{Bx+C}{(x+1)^2} [/mm]
Ist das ein allgemeingültiger Ansatz? Welchen Ansatz benötige ich bei Polynomen häherer Ordnung?

Grüße

        
Bezug
Integration rationaler Funktio: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Sa 15.10.2011
Autor: MathePower

Hallo volk,


> [mm]f(x)=\bruch{x^5+5x^4+4x^3-7x^2+4x+17}{x^3+4x^2+x-6}[/mm]
>  
> (a) Partialbruchzerlegung von f(x) durchführen
>  (b) unbestimmtes Integral von f(x) berechnen
>  Hallo,
>  ich bin mir nicht sicher, ob ich die Aufgabe richtig
> gelöst und den Rechenweg korrekt aufgeschrieben habe.
>
> (a)
>  
> p(x):= [mm]x^5+5x^4+4x^3-7x^2+4x+17[/mm]
>  q(x):= [mm]x^3+4x^2+x-6[/mm]
>  
> Da Grad(p(x)) > Grad(q(x))  => Polynomdivision
>  Es folgt
> [mm]f(x)=\bruch{(x^2+x-1)(x^3+4x^2+x-6)+2x^2+11x+11}{x^3+4x^2+x-6}=x^2+x-1+\bruch{2x^2+11x+11}{x^3+4x^2+x-6}[/mm]
>  Beim Bruch ist jetzt Grad(q(x)) > Grad(p(x))

>  q(x)=(x-1)(x+2)(x+3)
>  Damit folgt
>  
> [mm]\bruch{2x^2+11x+11}{x^3+4x^2+x-6}=\bruch{A}{x-1}+\bruch{B}{x+2}+\bruch{C}{x+3}[/mm]
>  Da keine Nullstelle doppelt vorkommt gilt
> [mm]A_{i}=\bruch{p(a_{i})}{\produkt_{i{\not=}j}^{}(a_{i}-a_{j})}[/mm]
>  Somit folgt A=2, B=1, C=-1
>  
> [mm]\bruch{2x^2+11x+11}{x^3+4x^2+x-6}=\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3}[/mm]
>  Damit ist das Ergebnis der Partialbruchzerlegung
>  [mm]f(x)=x^2+x-1+\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3}[/mm]
>  

[ok]


> (b)
>  
> [mm]\integral_{}^{}{x^2+x-1+\bruch{2}{x-1}+\bruch{1}{x+2}-\bruch{1}{x+3} dx}=\bruch{1}{3}x^3+\bruch{1}{2}x^2-x+2ln(x-1)+ln(x+2)-ln(x+3)[/mm]
>  


[ok]


>
>
> Ich habe noch eine Frage zu (a)
>  Wenn ich jetzt eine doppelte Nullstelle hätte hatten wir
> den Ansatz
> [mm]\bruch{3x^2+x}{x^3+x^2-x-1}=\bruch{A}{x-1}+\bruch{Bx+C}{(x+1)^2}[/mm]


Nicht ganz. Der korrekte Ansatz lautet:

[mm]\bruch{3x^2+x}{x^3+x^2-x-1}=\bruch{A}{x-1}+\bruch{B}{(x+1)^2}+\blue{\bruch{C}{x+1}}[/mm]


>  Ist das ein allgemeingültiger Ansatz? Welchen Ansatz
> benötige ich bei Polynomen häherer Ordnung?
>  
> Grüße LordPippin


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]