matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenIntegration im \R^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Integration im \R^n
Integration im \R^n < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration im \R^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Mi 23.01.2013
Autor: Laura87

Aufgabe
Zeigen Sie die folgenden Behauptungen

a) Sei R ein Quader im [mm] \IR^n [/mm] und seien Funktionen [mm] f,g:R-\IR [/mm] Riemann-integrierbaren mit [mm] f(x)\leg(x) [/mm] für alle x  [mm] \in [/mm] R

Dann gilt [mm] \integral_{R} f(x)dx\le \integral_{R} [/mm] g(x)dx

b) Die Menge [mm] {\bruch{1}{n}| n \in \IN}\cup{0} [/mm] ist eine Jordan Nullmenge

c) Für Teilmengen A [mm] \subseteq \IR^n [/mm] können nicht sowohl A als auch [mm] \IR^n \A [/mm] Lebesgue Nullemenge sein

d) Die Funktion [mm] f:[0,1]->\IR: [/mm]

[mm] f(x)=\begin{cases} \bruch{1}{n}, & \mbox{falls } x\in]\bruch{1}{n+1}] \mbox{ } \\ 0, & \mbox{falls } x=0 \mbox{ } \end{cases} [/mm]

ist Riemann integrierbar

Hallo,

ich habe mal bei der letzten angefangen:

für n [mm] \in \IN [/mm] betrachten wir die Treppenfunktion

[mm] \phi_n:[a,b] ->\IR \varphi_n:[a,b]->\IR [/mm]

die gegeben sind durch

[mm] \phi_n(x):=\begin{cases} f(x), & \mbox{falls} x\ge\bruch{1}{n} \mbox{} \\ 0, & \mbox{sonst }\mbox{} \end{cases} [/mm]

[mm] \varphi_n(x):=\begin{cases} f(x), & \mbox{falls} x\ge\bruch{1}{n} \mbox{} \\ \bruch{1}{n}, & \mbox{sonst }\mbox{} \end{cases} [/mm]

dann gilt:

[mm] \phi_n \le [/mm] f(x) [mm] \le \varphi_n [/mm]

und

[mm] \integral_0^1 \varphi_n(x)dx-\integral_0^1 \phi_n(x)dx=.... [/mm]

ist das soweit in Ordnung?

Würde mich über eine Korrektur freuen

Lg und danke im Voraus

Laura

        
Bezug
Integration im \R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mi 23.01.2013
Autor: fred97


> Zeigen Sie die folgenden Behauptungen
>  
> a) Sei R ein Quader im [mm]\IR^n[/mm] und seien Funktionen [mm]f,g:R-\IR[/mm]
> Riemann-integrierbaren mit [mm]f(x)\leg(x)[/mm] für alle x  [mm]\in[/mm] R
>  
> Dann gilt [mm]\integral_{R} f(x)dx\le \integral_{R}[/mm] g(x)dx
>  
> b) Die Menge [mm]{\bruch{1}{n}| n \in \IN}\cup{0}[/mm] ist eine
> Jordan Nullmenge
>  
> c) Für Teilmengen A [mm]\subseteq \IR^n[/mm] können nicht sowohl A
> als auch [mm]\IR^n \A[/mm] Lebesgue Nullemenge sein
>  
> d) Die Funktion [mm]f:[0,1]->\IR:[/mm]
>  
> [mm]f(x)=\begin{cases} \bruch{1}{n}, & \mbox{falls } x\in]\bruch{1}{n+1}] \mbox{ } \\ 0, & \mbox{falls } x=0 \mbox{ } \end{cases}[/mm]



Das soll wohl

  [mm]f(x)=\begin{cases} \bruch{1}{n}, & \mbox{falls } x\in]0,\bruch{1}{n+1}] \mbox{ } \\ 0, & \mbox{falls } x=0 \mbox{ } \end{cases}[/mm]

lauten.


>  
> ist Riemann integrierbar
>  Hallo,
>  
> ich habe mal bei der letzten angefangen:
>  
> für n [mm]\in \IN[/mm] betrachten wir die Treppenfunktion
>
> [mm]\phi_n:[a,b] ->\IR \varphi_n:[a,b]->\IR[/mm]
>  
> die gegeben sind durch
>  
> [mm]\phi_n(x):=\begin{cases} f(x), & \mbox{falls} x\ge\bruch{1}{n} \mbox{} \\ 0, & \mbox{sonst }\mbox{} \end{cases}[/mm]
>  
> [mm]\varphi_n(x):=\begin{cases} f(x), & \mbox{falls} x\ge\bruch{1}{n} \mbox{} \\ \bruch{1}{n}, & \mbox{sonst }\mbox{} \end{cases}[/mm]
>  
> dann gilt:
>  
> [mm]\phi_n \le[/mm] f(x) [mm]\le \varphi_n[/mm]

ja, das stimmt, aber ...

>  
> und
>
> [mm]\integral_0^1 \varphi_n(x)dx-\integral_0^1 \phi_n(x)dx=....[/mm]
>  
> ist das soweit in Ordnung?

Was heißt in Ordnung ? Was machst Du mit all dem ? Was kommt nach ....


Wenn ich hinschreibe:

    [mm] s^2+ch(x- \pi)+\xi (x^2)= [/mm] ......

und Dich frage: ist das in Ordnung ? Was würdest Du antworten ?

FRED

>  
> Würde mich über eine Korrektur freuen
>  
> Lg und danke im Voraus
>  
> Laura


Bezug
                
Bezug
Integration im \R^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Do 24.01.2013
Autor: Laura87

Hallo,


ich habe nun folgendes gemacht:

[mm] \integral_0^1 \varphi_n(x)dx-\integral_0^1 \phi_n(x)dx=\integral_0^{\bruch{1}{n}}\bruch{1}{n} [/mm] dx+ [mm] \integral_{\bruch{1}{n}}^1 [/mm] f(x) [mm] dx-\integral_0^{\bruch{1}{n}} [/mm] 0 dx- [mm] \integral_{\bruch{1}{n}}^1 f(x)dx=\integral_0^{\bruch{1}{n}}\bruch{1}{n} dx-\integral_0^{\bruch{1}{n}} [/mm] 0 [mm] dx=\bruch{1}{n^2}--> [/mm] nicht riemann integrierbar

Lg Laura

Bezug
                        
Bezug
Integration im \R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Do 24.01.2013
Autor: fred97

Mir fällt gerade auf (gestern hatte ich das übersehen), dass

$ [mm] f:[0,1]->\IR: [/mm] $

durch

$ [mm] f(x)=\begin{cases} \bruch{1}{n}, & \mbox{falls } x\in]\bruch{1}{n+1}] \mbox{ } \\ 0, & \mbox{falls } x=0 \mbox{ } \end{cases} [/mm] $

gar nicht definiert ist. Wenn [mm] \n \in \IN, [/mm] so ist [mm] \bruch{1}{n+1} \le [/mm] 1/2.

Wie ist f denn im Intervall [mm] $(\bruch{1}{2},1 [/mm] ]$ definiert ? Wie ist f überhaupt definiert ?

Gib das mal richtig an.

FRED

Bezug
                                
Bezug
Integration im \R^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Do 24.01.2013
Autor: Laura87

sry das muesste so da stehen:

$ [mm] f(x)=\begin{cases} \bruch{1}{n}, & \mbox{falls } x\in]\bruch{1}{n+1}, \bruch{1}{n}] \mbox{ } \\ 0, & \mbox{falls } x=0 \mbox{ } \end{cases} [/mm] $

sonst sind keine weiteren angaben gegeben

Bezug
                                        
Bezug
Integration im \R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Do 24.01.2013
Autor: fred97


> sry das muesste so da stehen:
>  
> [mm]f(x)=\begin{cases} \bruch{1}{n}, & \mbox{falls } x\in]\bruch{1}{n+1}, \bruch{1}{n}] \mbox{ } \\ 0, & \mbox{falls } x=0 \mbox{ } \end{cases}[/mm]
>  
> sonst sind keine weiteren angaben gegeben

Das genügt ja auch.

Die Riemannintegrierbarkeit kannst Du so begründen:

f ist auf [0,1] monoton wachsend, also R - integrierbar.

Oder so:

f ist auf [0,1] beschränkt und fast überall stetig,  also R - integrierbar.

FRED


Bezug
                        
Bezug
Integration im \R^n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Do 24.01.2013
Autor: fred97


> Hallo,
>  
>
> ich habe nun folgendes gemacht:
>  
> [mm]\integral_0^1 \varphi_n(x)dx-\integral_0^1 \phi_n(x)dx=\integral_0^{\bruch{1}{n}}\bruch{1}{n}[/mm]
> dx+ [mm]\integral_{\bruch{1}{n}}^1[/mm] f(x)
> [mm]dx-\integral_0^{\bruch{1}{n}}[/mm] 0 dx-
> [mm]\integral_{\bruch{1}{n}}^1 f(x)dx=\integral_0^{\bruch{1}{n}}\bruch{1}{n} dx-\integral_0^{\bruch{1}{n}}[/mm]
> 0 [mm]dx=\bruch{1}{n^2}-->[/mm] nicht riemann integrierbar

Das ist doch gober Unfug ! Oben kommt zweimal das Integral [mm] \integral_{\bruch{1}{n}}^1 [/mm] f(x)dx vor.

Damit benutzt Du die R - integrierbarkeit von f  und folgerst, das f nicht R - integrierbar ist ????

FRED

>  
> Lg Laura


Bezug
        
Bezug
Integration im \R^n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Mi 23.01.2013
Autor: Laura87

Ich wollte nur wissen ob meine schritte bis dahin richtig sind.

Danke für die antwort.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]