matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Integration durch Substitution
Integration durch Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Frage2
Status: (Frage) beantwortet Status 
Datum: 15:02 Sa 26.11.2005
Autor: svenchen

Hallo,

Könnt ihr mir vielleicht bei einer Aufgabe behilflich sein? Mir fehlt hier im Moment noch zu erkennen, wie ich diese Aufgaben am Besen löse:

Gegeben ist die Funktion f(x) = [mm] (lnx)^{3}. [/mm] Geben Sie eine Stammfunktion an.

Ich würde diese Aufgabe gerne über Integration durch Substitution lösen. Dazu habe ich lnx = z substituiert. Außerdem habe ich noch dx =  [mm] \bruch{1}{x} [/mm] du berechnet. Also kann schonmal folgender Zsuammenhang festgehalten werden:

[mm] \integral_{a}^{b} {(lnx)^{3} dx} [/mm] = [mm] (z)^{3} [/mm] * [mm] \bruch{1}{x} [/mm]  = [mm] \bruch{z^{3}}{x} [/mm]

aber wie finde ich jetzt eine Stammfunktion von [mm] \bruch{z^{3}}{x} [/mm] ?

könnt ihr mir helfen'?



        
Bezug
Integration durch Substitution: Hinweis
Status: (Antwort) fertig Status 
Datum: 16:05 Sa 26.11.2005
Autor: MathePower

Hallo svenchen,

> Hallo,
>  
> Könnt ihr mir vielleicht bei einer Aufgabe behilflich sein?
> Mir fehlt hier im Moment noch zu erkennen, wie ich diese
> Aufgaben am Besen löse:
>  
> Gegeben ist die Funktion f(x) = [mm](lnx)^{3}.[/mm] Geben Sie eine
> Stammfunktion an.
>  
> Ich würde diese Aufgabe gerne über Integration durch
> Substitution lösen. Dazu habe ich lnx = z substituiert.
> Außerdem habe ich noch dx =  [mm]\bruch{1}{x}[/mm] du berechnet.
> Also kann schonmal folgender Zsuammenhang festgehalten
> werden:
>  
> [mm]\integral_{a}^{b} {(lnx)^{3} dx}[/mm] = [mm](z)^{3}[/mm] * [mm]\bruch{1}{x}[/mm]  
> = [mm]\bruch{z^{3}}{x}[/mm]
>  
> aber wie finde ich jetzt eine Stammfunktion von
> [mm]\bruch{z^{3}}{x}[/mm] ?
>  
> könnt ihr mir helfen'?
>  

das x musst Du auch ersetzen.

Dann steht da:

[mm]\int {(\ln \;x)^3 \;dx} \; = \;\int {z^3 \;e^z \;d} z[/mm]

Dieses Integral ist dann durch partielle Integration zu lösen.

Gruß
MathePower


  

Bezug
                
Bezug
Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Sa 26.11.2005
Autor: svenchen

Hi, danke!
hab die Aufgabe hetzt gelöst, allerdings hab ich knapp eine Seite bei der partiellen Integration. Habe 3 mal partiell integrieren müssen, um endlich das Integral aufzuösen. Wenn du einen Trick kennst, mit dem es in 2-3 Schritten geht wäre es nett, wenn du deine Lösung mal schreiben könntest.

danke

svenchen

Bezug
                        
Bezug
Integration durch Substitution: nicht schneller
Status: (Antwort) fertig Status 
Datum: 20:01 Sa 26.11.2005
Autor: leduart

Hallo svenchen
Esgeht leider nicht schneller! höchstens, man ahnt nach dem 1. Schritt wie's weiter geht, schreibt die fertige Formel hin und beweist sie durch differenzieren!
Gruss leduart

Bezug
                        
Bezug
Integration durch Substitution: Fertige Formel
Status: (Antwort) fertig Status 
Datum: 20:06 Sa 26.11.2005
Autor: MathePower

Hallo svenchen,

> Hi, danke!
>  hab die Aufgabe hetzt gelöst, allerdings hab ich knapp
> eine Seite bei der partiellen Integration. Habe 3 mal
> partiell integrieren müssen, um endlich das Integral
> aufzuösen. Wenn du einen Trick kennst, mit dem es in 2-3
> Schritten geht wäre es nett, wenn du deine Lösung mal
> schreiben könntest.

wie  leduart schon geschrieben hat, geht es nicht schneller.

Darum hier die allgemeine Formel für solche Integrale

[mm]\int {z^n \;e^z \;dz\; = \;\sum\limits_{k = 0}^n {\left( { - 1} \right)^{n - k} \;\left( {n - k} \right)!\;z^k \;e^z } } [/mm]

Gruß
MathePower



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]