matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration Partialbruchzerleg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Integration Partialbruchzerleg
Integration Partialbruchzerleg < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration Partialbruchzerleg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Do 10.04.2008
Autor: dieanne

Aufgabe
Berechnen sie unter Verwendung geeigneter Integrationsmethoden die unbestimmten Integrale:

b) [mm] \integral{\bruch{x+2}{x^3-2*x^2+x}dx} [/mm]
c) [mm] \integral{\bruch{dx}{(x-16)*\wurzel{x}}} [/mm]

a) und d) habe ich  

Hallo,

diese 4 Integrale gehören zu einer Aufgabe und bei den beiden die ich hinbekommen habe war es mit Partialbruchzerlegung zu mach (bei einem auch in Kombination mit Substitution). Bei b) und c) komme ich nicht weiter:

Bei b) habe ich das auch mit Partialbruchzerlegung versucht und erstmal ein x ausgeklammert. Die quadratische Gleichung die im Nenner in der Klammer übrig bleibt hat dann eine Doppelnullstelle bei 1. Hier fangen meine Probleme an: Wir haben in der Übung zu dem Thema nur ein Beispiel gemacht bei dem blieb auch was Quadratisches in der Klammer, dass hatte keine Nullstellen und wir haben dann mit dem quadratischen Ausdruck als Faktor weiter gemacht. Das geht hier erstmal auch. Ich bekomme dann für A=2, B=-2 und C=5 raus. Leider kann ich dann trotzdem nicht die Stammfunktion von [mm] \bruch{-2*x+5}{x^2-2*x+1} [/mm] bilden.
Meine andere Idee war es [mm] x^2-2*x+1=(x-1)*(x-1) [/mm] zu zerlegen, dann bekomme ich für A=2, aber nichts für B und C raus (was ja irgendwie klar ist). Kann mir da jemand weiterhelfen?

Bei c) hatte ich noch keine brauchbaren Ideen und alles was ich versucht habe, hat ins Leere geführt. Es wäre nett, wenn mir jemand mal einen Anstoß geben könnte.

Vielen Dank!

        
Bezug
Integration Partialbruchzerleg: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Do 10.04.2008
Autor: Marcel

Hallo Anne,

> Berechnen sie unter Verwendung geeigneter
> Integrationsmethoden die unbestimmten Integrale:
>  
> b) [mm]\integral{\bruch{x+2}{x^3-2*x^2+x}dx}[/mm]
>  c) [mm]\integral{\bruch{dx}{(x-16)*\wurzel{x}}}[/mm]
>  
> a) und d) habe ich
> Hallo,
>  
> diese 4 Integrale gehören zu einer Aufgabe und bei den
> beiden die ich hinbekommen habe war es mit
> Partialbruchzerlegung zu mach (bei einem auch in
> Kombination mit Substitution). Bei b) und c) komme ich
> nicht weiter:
>  
> Bei b) habe ich das auch mit Partialbruchzerlegung versucht
> und erstmal ein x ausgeklammert.

Ich hoffe, Du hast es nicht "vor das Integral" gezogen, sondern Du machst das, um dann partielle Integration anzuwenden. Denn wenn Du das machst, ist der Integrand ein Produkt der Funktionen

[mm] $f(x)=\frac{1}{x}$ [/mm] und [mm] $g(x)=\bruch{x+2}{x^2-2*x+1}$ [/mm]

> Die quadratische Gleichung
> die im Nenner in der Klammer übrig bleibt hat dann eine
> Doppelnullstelle bei 1. Hier fangen meine Probleme an: Wir
> haben in der Übung zu dem Thema nur ein Beispiel gemacht
> bei dem blieb auch was Quadratisches in der Klammer, dass
> hatte keine Nullstellen und wir haben dann mit dem
> quadratischen Ausdruck als Faktor weiter gemacht. Das geht
> hier erstmal auch. Ich bekomme dann für A=2, B=-2 und C=5
> raus. Leider kann ich dann trotzdem nicht die Stammfunktion
> von [mm]\bruch{-2*x+5}{x^2-2*x+1}[/mm] bilden.

Vornerweg: Ich habe nichts nachgerechnet. D.h. ich gehe hier mal davon aus, dass Du daran scheiterst

[mm] $\int \bruch{-2*x+5}{x^2-2*x+1}dx$ [/mm]

zu berechnen. Im Zähler steht aber "im Wesentlichen" die Ableitung des Nenners (Du könntest mal ein $-$ rausziehen und dann $-5=-2-3)$ benutzen, dann siehst Du es vll. noch besser). Daher liegt es hier eigentlich nahe:

[mm] $y=y(x):=x^2-2x+1$ [/mm] zu setzen (es ginge auch z.B. [mm] $y=x^2-2x$). [/mm] Dann gilt unter Beachtung von $dy=(2x-2)dx$:

[mm] $\int \bruch{-2*x+5}{x^2-2*x+1}dx=-\int \frac{2x-5}{x^2-2x+1}dx=-\int \frac{2x-2}{x^2-2x+1}dx-3\int \frac{1}{x^2-2x+1}dx$ [/mm]

[mm] $=-\int \frac{1}{y}dy-3\int \frac{1}{(x-1)^2}dx$ [/mm]

Um das erste Integral zu berechnen, musst Du halt wissen, dass [mm] $\ln\,'(x)=\frac{1}{x}$. [/mm] Benutze das, und vergesse nicht, $y$ wieder zu ersubstituieren.

Zu dem zweiten Integral:
Eigentlich kann man sofort sehen, dass für $x [mm] \mapsto \frac{1}{(x-1)^2}$ [/mm] die Funktion $x [mm] \mapsto \frac{-1}{(x-1)}$ [/mm] eine Stammfunktion ist (man leite die letzte einfach ab). Da Du dies aber vll. nicht siehst:
Um [mm] $\int \frac{1}{(x-1)^2}dx$ [/mm] zu berechnen:

Substituiere einfach mal $z=z(x):=x-1$, dann geht [mm] $\int \frac{1}{(x-1)^2}dx$ [/mm] über in

[mm] $\int \frac{1}{z^2}dz=\int z^{-2}dz$ [/mm]

Für $z [mm] \mapsto z^{-2}$ [/mm] kennst Du sicher eine Stammfunktion. Dann Resubstituion nicht vergessen.

> Bei c) hatte ich noch keine brauchbaren Ideen und alles was
> ich versucht habe, hat ins Leere geführt. Es wäre nett,
> wenn mir jemand mal einen Anstoß geben könnte.

Probiere es mal mit der Substitution

[mm] $z:=x^{\frac{1}{2}}=\sqrt{x}$ [/mm]

Dann sollte das Integral übergehen zu

[mm] $\int \frac{2}{z^2-16}dz$ [/mm]

Nun kannst Du mittels Partialbruchzerlegung oder durch Verfolgen meiner Rechnung sehen:

[mm] $\frac{2}{z^2-16}=\frac{2}{(z+4)(z-4)}=\frac{8}{4}*\frac{1}{(z+4)(z-4)}$ [/mm]

[mm] $=\frac{1}{4}\frac{(z+4)-(z-4)}{(z+4)(z-4)}=\frac{1}{4}*\left(\frac{1}{z-4}-\frac{1}{z+4}\right)$ [/mm]

Damit:

[mm] $\int \frac{2}{z^2-16}dz=\frac{1}{4}*\int \frac{1}{z-4}dz-\frac{1}{4}*\int \frac{1}{z+4}dz$ [/mm]

Noch eine Idee für den letzten Schritt?

Gruß,
Marcel

Bezug
                
Bezug
Integration Partialbruchzerleg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Do 10.04.2008
Autor: dieanne

Im letzten Schritt einfach die Stammfunktion mit dem Logarithmus bilden:

[mm] \bruch{1}{4}*\integral{\bruch{1}{z-4}dz}-\bruch{1}{4}*\integral{\bruch{1}{z+4}dz} [/mm]
= [mm] \bruch{1}{4}*ln|z-4|-\bruch{1}{4}*ln|z+4|+C [/mm]

Dann noch Rücksubstituieren und fertig, oder?

Vielen Dank für deine schnelle Antwort! Das hat mir wirklich viel weiter geholfen!

Lg Anne

Bezug
                        
Bezug
Integration Partialbruchzerleg: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Do 10.04.2008
Autor: Marcel

Hallo Anne,

> Im letzten Schritt einfach die Stammfunktion mit dem
> Logarithmus bilden:
>  
> [mm]\bruch{1}{4}*\integral{\bruch{1}{z-4}dz}-\bruch{1}{4}*\integral{\bruch{1}{z+4}dz}[/mm]
>  = [mm]\bruch{1}{4}*ln|z-4|-\bruch{1}{4}*ln|z+4|+C[/mm]
>  
> Dann noch Rücksubstituieren und fertig, oder?

genau so ist es. Sehr schön :-)

(P.S.: Du hast natürlich recht, dass man auf [mm] $\IR \setminus \{0\}$ [/mm] sagen kann, dass $x [mm] \mapsto \ln|x|$ [/mm] eine Stammfunktion für $x [mm] \mapsto \frac{1}{x}$ [/mm] ist. Aber im Prinzip reicht es zu wissen, dass $x [mm] \mapsto \ln(x)$ [/mm] auf [mm] $]0,\infty[$ [/mm] eine Stammfunktion für $x [mm] \mapsto \frac{1}{x}$ [/mm] ist, das mit dem [mm] $\ln|x|$ [/mm] folgt dann z.B. aus Symmetriegründen (Punktsymmetrie zum Ursprung). Aber gut, dass Du dran gedacht hast, [mm] $\ln|x|$ [/mm] zu nehmen :-).)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]