matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegration Doppelintegral exp
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Integration Doppelintegral exp
Integration Doppelintegral exp < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration Doppelintegral exp: Doppelintegral mit e-funktion
Status: (Frage) beantwortet Status 
Datum: 12:39 Mo 23.03.2009
Autor: JakobL

Aufgabe
[mm]Sei D:= \{(x,y) \in \IR^2 | 0 < x, y < x \} Zeige: \int_{D}{ x*e^{-\bruch{1}{2}(x^2 + y^2)}}dxdy = (1 + \wurzel(2))/2 *\wurzel(\pi) Ohne Beweis kann verwendet werden: \integral_{-\infty}^{\infty} exp(-x^2)\, dx = \wurzel(\pi) [/mm]

Hallo,

ich sitze hier grade an obiger Altklausuraufgabe, die mich wahnsinnig macht. Ich habe einfach mal die Integrationsreihenfolge vertauscht, was ja aber nur ärger macht, da ich ja dann zum schluss einen bedeutungslosen Ausdruck mit x stehen habe... Aber so müsste es doch eigentlich irgendwie gehen, denn der Term legt ja Integration nach x schon nahe oder? wenn ich zuerst nach y integriere komme ich gar nicht zurecht, weil ich die [mm]exp(-1/2)y^2 [/mm] nicht wirklich integrieren kann.

Irgendjemand eine Idee? vielen Dank schonmal!


        
Bezug
Integration Doppelintegral exp: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Mo 23.03.2009
Autor: Somebody


> [mm]Sei D:= \{(x,y) \in \IR^2 | 0 < x, y < x \} Zeige: \int_{D}{ x*e^{-\bruch{1}{2}(x^2 + y^2)}}dxdy = (1 + \wurzel(2))/2 *\wurzel(\pi) Ohne Beweis kann verwendet werden: \integral_{-\infty}^{\infty} exp(-x^2)\, dx = \wurzel(\pi) [/mm]
>  
> Hallo,
>  
> ich sitze hier grade an obiger Altklausuraufgabe, die mich
> wahnsinnig macht. Ich habe einfach mal die
> Integrationsreihenfolge vertauscht, was ja aber nur ärger
> macht, da ich ja dann zum schluss einen bedeutungslosen
> Ausdruck mit x stehen habe... Aber so müsste es doch
> eigentlich irgendwie gehen, denn der Term legt ja
> Integration nach x schon nahe oder? wenn ich zuerst nach y
> integriere komme ich gar nicht zurecht, weil ich die
> [mm]exp(-1/2)y^2[/mm] nicht wirklich integrieren kann.
>
> Irgendjemand eine Idee? vielen Dank schonmal!

Du kannst das Doppelintegral auf folgende Form bringen:

[mm]\int\limits_0^\infty e^{-y^2/2}\cdot \int\limits_y^\infty x e^{-x^2/2}\,dx\;dy[/mm]

Das innere Integral [mm] $\int\ldots [/mm] dx$ berechnest Du dann mittels Substitution. Es ist - Zufall, Zufall - gleich [mm] $e^{-y^2/2}$. [/mm] - Also?

Bezug
                
Bezug
Integration Doppelintegral exp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Mo 23.03.2009
Autor: JakobL

danke schonmal für deine antwort, aber ich fürchte ich bin ein härtefall, was diese aufgabe angeht...
zum einen verstehe ich nicht ganz wie du auf die umformung des doppelintegrals gekommen bist. eigentlich müsste y doch von [mm] -\infty [/mm] bis x laufen und jetzt läuft es ja von 0 bis [mm] \infty. [/mm]
das innere integral habe ich dann auch berechnet aber dann erhalte ich ja zum schluss nur noch:
[mm] $ \int\limits_0^\infty e^{-y^2} dy $ [/mm]
und das wäre ja dann [mm]\wurzel(\pi)/2[/mm] und nicht das gewünschte...

tut mir leid, fürchte ich habe da ein brett vorm kopf. wir haben eine ähnliche aufgabe mal gerechnet, aber da ging das alles erheblich einfacher.

Bezug
                        
Bezug
Integration Doppelintegral exp: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Mo 23.03.2009
Autor: Somebody


> danke schonmal für deine antwort, aber ich fürchte ich bin
> ein härtefall, was diese aufgabe angeht...
>  zum einen verstehe ich nicht ganz wie du auf die umformung
> des doppelintegrals gekommen bist. eigentlich müsste y doch
> von [mm]-\infty[/mm] bis x laufen und jetzt läuft es ja von 0 bis
> [mm]\infty.[/mm]

Du hast recht: ich habe in der Eile den Integrationsbereich falsch interpretiert. Leider habe ich im Moment nicht genügend Zeit mich mit diesem Problem zu beschäftigen (habe gleich eine Online-Nachhilfestunde zu geben). Vielleicht hat ja jemand eine bessere Idee.

>  das innere integral habe ich dann auch berechnet aber dann
> erhalte ich ja zum schluss nur noch:
>  [mm]$ \int\limits_0^\infty e^{-y^2} dy $[/mm]
>  und das wäre ja dann
> [mm]\wurzel(\pi)/2[/mm]

Dieses Integral wäre also nur der Teil für [mm] $0\leq [/mm] x,y$ und [mm] $y\leq [/mm] x$. Vielleicht sollte man über den Rest (das ist der ganze 4. Quadrant, d.h. [mm] $0\leq [/mm] x$ und [mm] $y\leq [/mm] 0$) getrennt integrieren: denn dieser Rest ist ein Rechteckbereich, bezüglich dem sich das Doppelintegral des Produktes von [mm] $x\cdot e^{-x^2/2}$ [/mm] und [mm] $e^{-y^2/2}$ [/mm] sehr leicht in ein Produkt von Integralen umformen lässt. Integrale, die Du beide berechnen kannst.

>  und nicht das gewünschte...
> tut mir leid, fürchte ich habe da ein brett vorm kopf. wir
> haben eine ähnliche aufgabe mal gerechnet, aber da ging das
> alles erheblich einfacher.


Bezug
                                
Bezug
Integration Doppelintegral exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 Di 24.03.2009
Autor: JakobL

ja, so hab ichs hingekriegt! Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]