matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Integration Beweis
Integration Beweis < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration Beweis: Idee
Status: (Frage) beantwortet Status 
Datum: 18:57 Mo 07.06.2010
Autor: Mimuu

Aufgabe
Sei f:[0,1] --> [mm] \IR [/mm] eine zweimal stetig differenzierbare Funktion. Zeige: Dann gibt es ein a,b [mm] \in \IR, [/mm] sodass

f(x) = [mm] a+bx+\bruch{1}{2}\integral_{0}^{1}{f''(t)*|t-x| dt} [/mm]
für alle [mm] x\in [/mm] [0,1]

Kann mir jemand einen Tipp geben, wie ich an die Aufgabe rangehen kann? ich habe schon mal versucht, dass Integral zu berechnen, aber das ist der falsche Weg.

        
Bezug
Integration Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mo 07.06.2010
Autor: kevin314

Hi,

das sieht doch sehr nach Taylorentwicklung aus, nur leider stimmt das Restglied nicht ganz - vielleicht kannst Du damit was basteln?

Bezug
                
Bezug
Integration Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Mo 07.06.2010
Autor: Mimuu

Was eine Taylorentwicklung ist, weiß ich, aber ich kann jetzt keinen Bezug zu der Aufgabe herstellen.
Kannst du mir vielleicht noch ein bisschen weiterhelfen?

Bezug
                        
Bezug
Integration Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:41 Di 08.06.2010
Autor: fred97

Tipp: https://matheraum.de/read?i=690567

FRED

Bezug
        
Bezug
Integration Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:40 Di 08.06.2010
Autor: fred97

Setze

           [mm] $g(x)=\bruch{1}{2}\integral_{0}^{1}{f''(t)\cdot{}|t-x| dt} [/mm] $

zeige nun, dass g 2-mal differenzierbar ist und $g''=f''$ auf [0,1] ist

FRED

Bezug
                
Bezug
Integration Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Di 08.06.2010
Autor: Mimuu

wie kann ich denn ein Integral ableiten, bzw. sogar zweimal ableiten?

Bezug
                        
Bezug
Integration Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Do 10.06.2010
Autor: MathePower

Hallo Mimuu,

> wie kann ich denn ein Integral ableiten, bzw. sogar zweimal
> ableiten?


Da die Integrationsgrenzen nicht von x abhängig sind
ergibt sich die Ableitung zu:

[mm]g'\left(x\right)=\bruch{d}{dx}\bruch{1}{2}\integral_{0}^{1}{f''(t)\cdot{}|t-x| dt}=\bruch{1}{2}\integral_{0}^{1}{\bruch{d}{dx}\left( \ f''(t)\cdot{}|t-x| \ \right) \ dt}[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]