matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Integration
Integration < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 13:13 Mo 06.06.2005
Autor: Griesig

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

Folgende Frage:

Finden sie die Stammfunktionen zu:

i) [mm] f(x)= x^7*exp(x^4)[/mm]
ii) [mm] f(x) = x*|x| [/mm]

Das erste habe ich versucht, komme aber nicht wirklich bis zum Ende. Ich vermute bei der Lösung wird ein Summen operator auftauchen.
Wäre spitze wenn ihr mir helfen könntet.

Zum zweiten eine kurze Frage:

Reicht es eine Fall Unterscheidung zu machen und zu folgern:
[mm] x \le 0: \integral_{a}^{b} {x*(-x) dx} = - \bruch{1}{3}*x^3 [/mm]

und

[mm] x > 0: \integral_{a}^{b} {x*(x) dx} = \bruch{1}{3}*x^3 [/mm]

und schließlich zu sagen:

[mm] a [mm] \le [/mm] 0, b > 0:  [mm] \integral_{a}^{b} [/mm] {x*|x| dx} =  [mm] \bruch{1}{3}*x^3|^0_a [/mm] + [mm] \bruch{1}{3}*x^3|^b_0 [/mm]

Danke schon mal im Voraus!

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Mo 06.06.2005
Autor: banachella

Hallo!

Beim zweiten Integral ist eine Fallunterscheidung wie du sie gemacht hast auf jeden Fall der richtige Weg... Allerdings solltest du es etwas sauberer aufschreiben. Du kannst eigentlich nicht [mm] $x\ge [/mm] 0$ voraussetzen (das ist ja deine Integrationsvriable), sondern solltest die folgenden drei Fälle unterscheiden:
1. [mm] $0\le a\le [/mm] b$
2. $ [mm] a\le b\le [/mm] 0$
3. [mm] $a\le 0\le [/mm] b$.

Beim ersten Integral ergibt partielle Integration:
[mm] $\int x^7\exp(x^4)dx=\bruch 14\int x^4\big(4x^3\exp(x^4)\big)dx=\bruch [/mm] 14 [mm] x^4\exp(x^4)-\int x^3\exp(x^4)dx$... [/mm]

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]