matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integration
Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:02 Mo 16.05.2005
Autor: bourne

Hallo zusammen:


Die Aufgabe lautet bestimmen Sie das Volumen des Rotationskörpers, welcher durch Drehung des Funktionsgraphen um die y-Achse entsteht.

Die Funktion lautet:

f(x)=4/3 [mm] \wurzel{x^2+9} [/mm]

Zunächst habe ich den Wertebereich bestimmt:
W(f)=[6 [mm] \bruch{2}{3};8,94] [/mm]

Danach habe ich die Umkehrfunktion von f(x) bestimmt:

[mm] y^2=( \bruch{x}{ \bruch{4}{3}})^2-9 [/mm]

Das Integral lautet:
V(x)=  [mm] \pi\integral_{6 \bruch{2}{3}}^{8,94} [/mm] {( [mm] \bruch{x}{ \bruch{4}{3}})^2-9 [/mm] dx}

Jetzt hab ich jedoch Probleme mit der Stammfunktion.
Als Ergebnis müsste 182,5 rauskommen.

Danke.

        
Bezug
Integration: Umformen
Status: (Antwort) fertig Status 
Datum: 12:22 Mo 16.05.2005
Autor: Loddar

Hallo bourne!


Forme doch einfach mal mit Bruchrechnung und MBPotenzgesetzen um:

[mm]y^2 \ = \ \left(\bruch{x}{\bruch{4}{3}}\right)^2-9 \ = \ \left(x*\bruch{3}{4}\right)^2-9 \ = \ x^2*\left(\bruch{3}{4}\right)^2-9 \ = \ \bruch{9}{16}*x^2-9[/mm]

Davon lässt sich doch die Stammfunktion ziemlich leicht ermitteln, oder?

Nachgerechnet habe ich jetzt nicht. Allerdings ist mir unklar, wie Du auf die Integrationsgrenzen gekommen bist. [kopfkratz3]

Gibt es in der Aufgabenstellung noch mehr Angaben, die Du uns bisher vorenthalten hast?


Gruß
Loddar


Bezug
        
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 Mo 16.05.2005
Autor: bourne

Zunächst mal Danke für die schnelle Antwort.

Sorry, ich hatte vergessen den Defintionsbereich mit anzugeben.

D(f)=[4;6]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]