matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematicaIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathematica" - Integration
Integration < Mathematica < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 Mi 04.02.2009
Autor: mucki.l

jetzt habe ich eine frage zu einer anderen aufleitung.

was beudeutet dieses ergebnis ?

In[3]:= f[x_] := [mm] 2/(x^2 [/mm] - [mm] 2)^2 [/mm]

In[4]:= Integrate[f[x], {x, 0, x}]

Out[4]= 2 If[-Sqrt[2] <= Re[x] <= Sqrt[2] || Im[x] != 0,
  1/8 (-((2 x)/(-2 + [mm] x^2)) [/mm] + Sqrt[2] ArcTanh[x/Sqrt[2]]),
  Integrate[1/(-2 + [mm] x^2)^2, [/mm] {x, 0, x},
   Assumptions -> ! (-Sqrt[2] <= Re[x] <= Sqrt[2] || Im[x] != 0)]]


ist die stammfunktion nun
1/8 (-((2 x)/(-2 + [mm] x^2)) [/mm] + Sqrt[2] ArcTanh[x/Sqrt[2]])

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Mi 04.02.2009
Autor: schachuzipus

Hallo mucki.l,

> jetzt habe ich eine frage zu einer anderen aufleitung.
>  
> was beudeutet dieses ergebnis ?
>  
> In[3]:= f[x_] := [mm]2/(x^2[/mm] - [mm]2)^2[/mm]
>  
> In[4]:= Integrate[f[x], {x, 0, x}]

Hiermit lässt du [mm] $\int\limits_{0}^x{\frac{2}{(x^2-2)^2} \ dx}$ [/mm] berechnen.

Falls du das unbestimmte Integral [mm] $\int{\frac{2}{(x^2-2)^2} \ dx}$ [/mm] berechnen lassen willst, nimm den Befehl

Integrate[f,x] bzw. ohne vorher definierte Funktion Integrate[2/(x^2-2)^2,x]

>  
> Out[4]= 2 If[-Sqrt[2] <= Re[x] <= Sqrt[2] || Im[x] != 0,
> 1/8 (-((2 x)/(-2 + [mm]x^2))[/mm] + Sqrt[2] ArcTanh[x/Sqrt[2]]),
> Integrate[1/(-2 + [mm]x^2)^2,[/mm] {x, 0, x},
> Assumptions -> ! (-Sqrt[2] <= Re[x] <= Sqrt[2] || Im[x] !=
> 0)]]
>  
>
> ist die stammfunktion nun
> 1/8 (-((2 x)/(-2 + [mm]x^2))[/mm] + Sqrt[2] ArcTanh[x/Sqrt[2]])


Puh, das unbestimmte Integral ist jedenfalls [mm] $\frac{\sqrt{2}\cdot{}\ln(x+\sqrt{2})}{8}-\frac{\sqrt{2}\cdot{}\ln(x-\sqrt{2})}{8}-\frac{x}{2(x^2-2)}$ [/mm]

Das kannst du über die Beziehung [mm] $artanh(z)=\frac{1}{2}\cdot{}\ln\left(\frac{1+z}{1-z}\right)$ [/mm] und die Beziehung [mm] $\ln\left(\frac{a}{b}\right)=\ln(a)-\ln(b)$ [/mm] umrechnen in eine Darstellung mit $artanh$ ...

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]