matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralrechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Do 12.08.2010
Autor: capablanca

Aufgabe
[mm] \bruch{2A}{T}(\integral_{0}^{T/2}{cos(nwt)dt}+\bruch{1}{2}\integral_{T/2}^{T}{cos(nwt)dt}) [/mm]

mit w = 2pi/T

Hallo, die Lösung von dieser Aufgabe ist:

[mm] \bruch{2A}{[red] nw [/red]T}(sin(nwt)|_0^{T/2}+\bruch{1}{2}sin(nwt)|_{T/2}^T)=0 [/mm]

Stammintegral von cos ist sin.
Ich kann den Rechenweg nachvolziehen, mir ist nur unklar wie "nw" im rot markierten Beerich zustande kommt, da sollte doch nur T stehen woher kommt da auf einmal "nw" dazu?

Bitte um Tipps


gruß


        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Do 12.08.2010
Autor: schachuzipus

Hallo Alex,

>
> [mm] $\bruch{2A}{T}(\integral_{0}^{T/2}{cos(nwt)dt}+\bruch{1}{2}\integral_{T/2}^{T}{cos(nwt)dt})$ [/mm]
>  
> mit w = 2pi/T
>  Hallo, die Lösung von dieser Aufgabe ist:
>  
> [mm] $\bruch{2A}{\red{nw}T}(sin(nwt)|_0^{T/2}+\bruch{1}{2}sin(nwt)|_{T/2}^T)=0$ [/mm]

>  
> Stammintegral von cos ist sin.
>  Ich kann den Rechenweg nachvolziehen, mir ist nur unklar
> wie "nw" im rot markierten Beerich zustande kommt?

Na, das ist der "Ausgleichsfaktor", der die Kettenregel berücksichtigt.

Wenn das "Stammintegral" von [mm] $\cos(nwt)$ [/mm] "nur" [mm] $\sin(nwt)$ [/mm] wäre, so müsste ja, wenn du's wieder ableitest, wieder [mm] $\cos(nwt)$ [/mm] herauskommen.

Aber [mm] $\left[\sin(nwt)\right]'=\cos(nwt)\cdot{}\red{nw}$ [/mm] (Kettenregel)

Diesen störenden Faktor bekommst du weg, wenn du vor das Stammintegral entsprechend den Faktor [mm] $\frac{1}{nw}$ [/mm] setzt.

Formal berechnet sich [mm] $\int{\cos(nwt) \ dt}$ [/mm] mit der linearen Substitution $u=u(t):=nwt$

Damit [mm] $u'(t)=\frac{du}{dt}=nw$, [/mm] also [mm] $dt=\frac{du}{nw}$ [/mm]

Damit wird das Integral zu [mm] $\int{\cos(u) \ \frac{du}{nw}}=\frac{1}{nw}\cdot{}\int{\cos(u) \ du}\ldots$ [/mm]

>  
> Bitte um Tipps
>  
>
> gruß
>  


LG

schachuzipus

Bezug
                
Bezug
Integralrechnung: verstanden, danke dir
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:05 Do 12.08.2010
Autor: capablanca

Danke dir für die sehr ausführliche und gut vertständliche Erklärung!


gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]