matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegralmerkmal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Integralmerkmal
Integralmerkmal < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralmerkmal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Sa 29.08.2009
Autor: Surfer

Hallo, bin gerade wieder in einer Aufgabe auf ein Integral gestoßen, das mein Prof immer gleich fertig integriert anschreibt, anstatt zu zeigen, wie er darauf gekommen ist:

und zwar:
[mm] \integral_{}^{}{sin\phi cos^{2}\phi d\phi} [/mm] = [mm] [-\bruch{1}{3}cos^{3}\phi] [/mm] aber woher weiss ich das, gibt es da irgendwie ne schnellere Möglichkeit das zu sehen oder muss ich bei so etwas jedes mal mit der partiellen Integration ran?

lg Surfer

        
Bezug
Integralmerkmal: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Sa 29.08.2009
Autor: awakening

Nunja, vermutlich hat er es einfach so rangeschrieben weil es einfach so zu sehen ist.

Du hast einen Term [mm] irgendwas^{2} [/mm] im Integral. Also hast du in der Stammfkt.
[mm] \bruch{1}{3} irgendwas^{3} [/mm] - das ist schonmal klar.

Da das "irgendwas" hier selbst eine Funktion ist (nämlich cosinus) kommt die Kettenregel ins Spiel.
Im Integral musst du also neben [mm] irgendwas^{2} [/mm] (was wie gesagt die Ableitung von [mm] \bruch{1}{3} irgendwas^{3} [/mm] ist), zusätzlich noch die Ableitung von "irgendwas" selbst vorfinden.

Da "irgendwas" in diesem Fall cosinus ist, ist die Ableitung von irgendwas -sinus.

Jetzt schaust du ins Integral und findest dort kein -sinus, sondern ein +sinus. Daher lautet die Stammfkt. wohl [mm] -\bruch{1}{3} irgendwas^{3} [/mm] statt [mm] \bruch{1}{3} irgendwas^{3}. [/mm]

Du kannst natürlich auch rechnerisch an die Sache rangehen...aber in diesem Fall ist es direkt zu sehen für einen geübten Blick, den man entwickelt je länger man sich mit Integralen beschäftigt=)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]