matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenIntegralfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Integralfunktion
Integralfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Mi 07.05.2014
Autor: DesterX

Hallo zusammen,
ich habe folgende Aussage gefunden, die ich leider nicht nachvollziehen kann.
Es [mm] $h(t):=\int_{-\infty}^{t} [/mm] g(t-s)f(s) \ ds$.
Wir nehmen an, dass f und g so gewählt sind, dass obiges Integral für alle [mm] $t\geq [/mm] 0$ existiert. Ferner sei g diff'bar und $f(0)=0$.
Nun soll gelten:
$dh = g(0)f(t) \ dt  \ + \ [mm] \int_{-\infty}^{t} [/mm] g'(t-s)f(s)ds \ dt.$
Kann mir jemand erklären, wie man auf diesen Ausdruck genau kommt?
Vielen Dank vorab für eure Hilfe,
Dester


        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Do 08.05.2014
Autor: Richie1401

Hallo,

zu bestimmen ist ja [mm] \frac{dh(t)}{dt}. [/mm]

Lasse also mal Leibniz auf das Integral los:

[]http://de.wikipedia.org/wiki/Parameterintegral#Leibnizregel_f.C3.BCr_Parameterintegrale

Bezug
                
Bezug
Integralfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:30 Do 08.05.2014
Autor: DesterX

Hallo,
danke Richie für deine Antwort. Das sieht erstmal sehr vielversprechend aus - macht aber hier nicht die untere Grenze [mm] $-\infty$ [/mm] alles zunichte?
Grüße
Dester

Bezug
                        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Sa 10.05.2014
Autor: fred97


> Hallo,
>  danke Richie für deine Antwort. Das sieht erstmal sehr
> vielversprechend aus - macht aber hier nicht die untere
> Grenze [mm]-\infty[/mm] alles zunichte?

Hierdrin

http://www.math.uni-leipzig.de/UAA/f/WS12XX31925.pdf

geht es u.a. auch um uneigentliche Parameterintegrale

FRED

>  Grüße
>  Dester


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]