matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikIntegrale zur Wegstreckenb.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Integrale zur Wegstreckenb.
Integrale zur Wegstreckenb. < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale zur Wegstreckenb.: Begründung
Status: (Frage) beantwortet Status 
Datum: 22:15 Di 20.04.2010
Autor: theromanian

Aufgabe
[mm] $S_A_B= \integral_{A}^{B}{ds}$ [/mm]

Wir haben heute gelernt, dass eine Teilstrecke auf einer Wurfbahn mit dem Integral,wie in der Aufgabenstellung beschrieben, ausgerechnet werden kann. Ich verstehe aber nicht warum, da doch das Integral die Fläche unter der Kurve bezeichnet und diese beiden doch nicht mal in der selben Dimension sind. Wäre super, wenn es mir jemand erklären könnte.

Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integrale zur Wegstreckenb.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Di 20.04.2010
Autor: Kroni

Hi,

wenn du ne Funktion $f(x)$ hast, und die ueber $x$ integrierst, ists die Flaeche unterhalb des Graphen. Du integrierst jetzt aber ueber das Wegelement [mm] $\mathrm{d}s$. [/mm] Das kann man sich dann vorstellen, als ein infinitesimales kleines Stueck Weglaenger auf deinem Weg, den du gehst. Also, wenns zB $2D$ ist [mm] $\mathrm{d}s [/mm] = [mm] \sqrt{\mathrm{d}x^2+\mathrm{d}y^2}$. [/mm] Wenn man das jetzt integriert (was ja eigentlich auch nichts anderes ist, als ne Summation, nur dass die Schrittweite gegen Null geht), dann summiert man alle kleinen Wegelemente [mm] $\mathrm{d}s$ [/mm] auf, und erhaelt dann so die Laenge des Pfades.
Das macht man dann meist ueber eine Weg-Parametrisierung, wie es zB []hier oder []hier unter 'Laenge des Weges' bzw Funktionsgraphen steht.

Wenn du dir dann die Def. von [mm] $\mathrm{d}s$ [/mm] anguckst, siehst du, dass es Dimension Laenge hat.

Es ist halt dann nicht mehr so 'einfach', dass man ueber ein [mm] $\mathrm{d}x$ [/mm] integriert, sondern jetzt ueber ein komplizierteres Gebilde, dass eben die Differentiale unter der Wurzel stehen hat. Ich denke, dass man dann mit der 'infinitesimales Wegelement' (das kann man sich dann auch durch die Laenge des infinitesimalen Vektors der Verbindungslinie der Koordinaten $(x,y)$ und [mm] (x+\mathrm{d}x, y+\mathrm{d}y)$ [/mm] 'herleiten') und dem Integral als Summation erklaeren kann.

LG

Kroni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]