matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntegrale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Integrale
Integrale < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Mo 10.05.2004
Autor: Juggi

Moin!
Ich habe zwei Funktionen gegeben. Und muss die Fläche bestimmen, zwischen den Funktionen. Alles kein Problem, dann kommt aber als Zusatzaufgabe.
Wo ist der Abstand der beiden Funktionen am größten!

Was will der von mir? Meienr MEinung sind die im Unendlichen am weitesten entfernt, oder täusch ich mich da?
Hier mal die beiden Funktionen!
f(x)= [mm] x^3-7x^2+7x+15 [/mm]
[mm] g(x)=x^2-4x-5 [/mm]

        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Mo 10.05.2004
Autor: Paulus

Nabend Juggi

> Moin!

Was heisst denn da Moin? ;-)

>  Ich habe zwei Funktionen gegeben. Und muss die Fläche
> bestimmen, zwischen den Funktionen. Alles kein Problem,
> dann kommt aber als Zusatzaufgabe.
> Wo ist der Abstand der beiden Funktionen am größten!
>  
> Was will der von mir? Meienr MEinung sind die im
> Unendlichen am weitesten entfernt, oder täusch ich mich
> da?

Bravo! Damit beweist du echtes mathematisches Verständnis!
Die Frage ist so tatsächlich nicht sinnvoll!

Ich denke aber, der will von dir den maximalen Abstand in dem Bereich, wo die Fläche liegt, die du eben berechnet hat. (Also ein lokales Maximum der Differenz der beiden Funktionen)

Ich glaube, mit dieser Interpretation kommst du weiter. Mache aber auch den Lehrer darauf aufmerksam, dass er in Zukunft die Fragen eindeutig stellen soll.
Ich habe nämlich festgestellt, dass die Präzision der gestelleten Fragen im Allgemeinen je länger, desto öfter zu wünschen übrig lässt! :-)

Mit lieben Grüssen


Bezug
                
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Di 11.05.2004
Autor: Juggi

Servus!
^^ besser so?

Nochmal eine Frage. Ich hab hier die Mathe Arbeit aus dem letzten Jahr vor mir liegen.
Ich habe eine Funktion gegeben, ist eine dritten Grades. Und die Aufgaben Stellung lautet Berechnen sie die den Flächeninhalt zwischen f(x) und der x-Achse. Ist der nicht auch unendlich groß?
Die nächste Frage lautet "Wie groß ist die Fläche, die vom Graphen der Ableitung der Funktion f(x) und der x-AChse eingeschlossen wird!

Wie soll ich das nun verstehen... Die erste Frage ist eine Pfandfrage? oder soll ich auch die eingeschlossene Fläche bestimmen (f(x) -- x-achse).

Bezug
                        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Di 11.05.2004
Autor: Julius

Hallo Juggi,

> Servus!
> ^^ besser so?

;-)

> Nochmal eine Frage. Ich hab hier die Mathe Arbeit aus dem
> letzten Jahr vor mir liegen.
>  Ich habe eine Funktion gegeben, ist eine dritten Grades.
> Und die Aufgaben Stellung lautet Berechnen sie die den
> Flächeninhalt zwischen f(x) und der x-Achse. Ist der nicht
> auch unendlich groß?

Gemeint ist: Berechnen Sie die Fläche, die der Graph von [mm]f(x)[/mm] und die [mm]x[/mm]-Achse miteinander einschließen, d.h. die Fläche(n) zwischen den Nullstellen.

>  Die nächste Frage lautet "Wie groß ist die Fläche, die vom
> Graphen der Ableitung der Funktion f(x) und der x-AChse
> eingeschlossen wird!
>  
> Wie soll ich das nun verstehen... Die erste Frage ist eine
> Pfandfrage? oder soll ich auch die eingeschlossene Fläche
> bestimmen (f(x) -- x-achse).

Ja, in beiden Fällen ist das gemeint. Einmal handelt es sich um den Graphen der Funktion [mm]f(x)[/mm], einmal um den Graphen der Funktion [mm]f'(x)[/mm].  

Jedenfalls vermute ich das...

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]