matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integrale
Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:12 Mo 01.05.2006
Autor: Sportsprinter

Aufgabe
Berechnen Sie [mm] $\integral_{a}^{b}{x^2 \ dx} [/mm] := [mm] \limes_{n\rightarrow\infty}\summe_{i=1}^{n} x^2(x_i [/mm] - [mm] x_{i-1})$ [/mm] mit [mm] $x_i [/mm] = i/n *a$

Hallo,

ich hoff mir kann jemand schnellstmöglich bei dieser Aufgabe weiterhelfen, da wir die Lösung bald abgeben müssen und ich keine Ahnung hab, wie ich sie Aufgabe lösen soll.

Vielen Dank,
Sportsprinter

        
Bezug
Integrale: einfach einsetzen
Status: (Antwort) fertig Status 
Datum: 10:18 Do 04.05.2006
Autor: Roadrunner

Hallo Sportsprinter!


> Berechnen Sie [mm]\integral_{a}^{b}{x^2 \ dx} := \limes_{n\rightarrow\infty}\summe_{i=1}^{n} x^2(x_i - x_{i-1})[/mm]  mit [mm]x_i = i/n *a[/mm]

Ich nehme mal an, es muss auch bei dem Quadrat in der Summe ein $x_$ mit Index $i_$ sein, oder?

[mm]\integral_{a}^{b}{x^2 \ dx} := \limes_{n\rightarrow\infty}\summe_{i=1}^{n} x_{\red{i}}^2(x_i - x_{i-1})[/mm]

Stimmen denn auch die beiden Integrationsgrenzen mit $a_$ und $b_$ ? Ich habe den Verdacht, dass die richtigen Grenzen $0_$ und $a_$ sein sollen, oder?

Anderenfalls stimmt die Definition [mm] $x_i [/mm] \ = \ [mm] \bruch{i}{n}*a$ [/mm] nicht ...


Setze hier nun konsequent die Definition [mm] $x_i [/mm] \ := \ [mm] \bruch{a}{n}*i$ [/mm] ein. Anschließend alles vor das Summenzeichen ziehen, was unabhängig ist von $i_$ .

Damit sollte dann eine Reihe der Quadratzahlen auftauchen, die man dann formelmäßig folgendermaßen umschreiben kann:

[mm] $1^2+2^2+3^2+...+n^2 [/mm] \ = \ [mm] \summe_{i=1}^{n}i^2 [/mm] \ = \ [mm] \bruch{n*(n+1)*(2n+1)}{6}$ [/mm]


Anschließend die Grenzwertbetrachtung [mm] $n\rightarrow\infty$ [/mm] sollte dann das bekannte Ergebnis [mm] $\bruch{1}{3}a^3$ [/mm] liefern (vorausgesetzt, die Grenzen lauten von $0_$ bis $a_$ ).


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]