matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integrale
Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Sa 15.02.2014
Autor: mtr-studi

Aufgabe
Berechnen Sie die folgenden unbestimmten Integrale durch partielle Integration oder Substitution

(1)
[mm] $\int [/mm] sin(x)*cos(2x) dx$

(2)
[mm] $\int log_4 [/mm] x dx$

Hallo Leute,
ich hätte eine Frage zur Integralrechnung.

(1)
[mm] $\int [/mm] sin(x)*cos(2x) dx$

Nutzung des Additionstheorems cos(2x)=2cos^2x-1

[mm] =$\int sin(x)*(2cos^2(x)-1) [/mm] dx$

Substitution über t=cosx => [mm] dx=\frac{dt}{-sin(x)} [/mm]

[mm] =$\int [/mm] sin(x)* [mm] (2t^2-1) \frac{dt}{-sin(x)}$ [/mm]

[mm] =$\int [/mm] - [mm] (2t^2-1) [/mm] dt$

[mm] =$\int [/mm] - [mm] 2t^2+1dt$ [/mm]

=- [mm] \frac{2}{3}t^3+t+C$ [/mm]

[mm] =-\frac{2}{3}cos^3(x)+cos(x)+C$ [/mm]

Wenn ich das Integral mal in ein CAS System oder Wolfram eingebe, sollte da eigentlich [mm] \frac{1}{6}(3*cos(x)-cos(3x))+C [/mm] rauskommen, das unterscheidet sich ja schon deutlich von meinem Ergebnis. Also ist mein Ergebnis überhaupt richtig?

(2)
[mm] $\int log_4 [/mm] x dx $

Ich habe hier leider keinen wirklichen Ansatz zur Bestimmung des Integrals. Nach Logarithmengesetzen müsste ich das ja auch als [mm] \frac{log(x)}{log(4)}. [/mm] Wenn keine Basis angegeben ist, ist es der Logarithmus zur Basis 10 gemeint oder? Wie kann ich hier weiter vorgehen? Ich vermute über eine geeignete Substitution, aber ich weiß leider nicht welche.

Vielen Dank im Voraus!


        
Bezug
Integrale: zu Aufgabe (1)
Status: (Antwort) fertig Status 
Datum: 17:30 Sa 15.02.2014
Autor: Loddar

Hallo mtr-studi!


> [mm]\int sin(x)*cos(2x) dx[/mm] [mm]=-\frac{2}{3}cos^3(x)+cos(x)+C[/mm]

[daumenhoch]


> Wenn ich das Integral mal in ein CAS System oder Wolfram
> eingebe, sollte da eigentlich
> [mm]\frac{1}{6}(3*cos(x)-cos(3x))+C[/mm] rauskommen, das
> unterscheidet sich ja schon deutlich von meinem Ergebnis.
> Also ist mein Ergebnis überhaupt richtig?

[ok] Ja, ist es.

Bedenke, dass gilt:  [mm] $\cos(3x) [/mm] \ = \ [mm] 4*\cos^3(x)-3*\cos(x)$ [/mm] .


Gruß
Loddar

Bezug
        
Bezug
Integrale: zu Aufgabe 2)
Status: (Antwort) fertig Status 
Datum: 17:44 Sa 15.02.2014
Autor: Sax

Hi,


> (2)
>  [mm]\int log_4 x dx[/mm]
>  
> Ich habe hier leider keinen wirklichen Ansatz zur
> Bestimmung des Integrals. Nach Logarithmengesetzen müsste
> ich das ja auch als [mm]\frac{log(x)}{log(4)}.[/mm] Wenn keine Basis
> angegeben ist, ist es der Logarithmus zur Basis 10 gemeint
> oder?

richtig. "oder" heißt : Oder jede andere Basis. Z.B. Basis e.
Du kannst also wie folgt umschreiben : [mm] log_4(x)=\bruch{ln(x)}{ln(4)}. [/mm]
[mm] \bruch{1}{ln(4)} [/mm] ziehst du aus dem Integral heraus und berechnest [mm] \integral{ln(x) dx}=\integral{1*ln(x) dx} [/mm] durch partielle Integration.

Gruß Sax.


Bezug
                
Bezug
Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 Sa 15.02.2014
Autor: mtr-studi


> Hi,
>  
>
> > (2)
>  >  [mm]\int log_4 x dx[/mm]
>  >  
> > Ich habe hier leider keinen wirklichen Ansatz zur
> > Bestimmung des Integrals. Nach Logarithmengesetzen müsste
> > ich das ja auch als [mm]\frac{log(x)}{log(4)}.[/mm] Wenn keine Basis
> > angegeben ist, ist es der Logarithmus zur Basis 10 gemeint
> > oder?
>
> richtig. "oder" heißt : Oder jede andere Basis. Z.B. Basis
> e.
>  Du kannst also wie folgt umschreiben :
> [mm]log_4(x)=\bruch{ln(x)}{ln(4)}.[/mm]
>  [mm]\bruch{1}{ln(4)}[/mm] ziehst du aus dem Integral heraus und
> berechnest [mm]\integral{ln(x) dx}=\integral{1*ln(x) dx}[/mm] durch
> partielle Integration.
>  
> Gruß Sax.
>  

Das war mir gar nicht bekannt, dass man das dann dann einfach den Logarithmus zu jeder Basis annehmen kann. So ist die Aufgabe natürlich leicht zu lösen, vielen Dank!



Bezug
                        
Bezug
Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Sa 15.02.2014
Autor: Sax

Hi,

das ergibt sich aus einem der Logarithmengesetze (die ihrerseits wiederum aus den Potenzgesetzen folgen) :

Wenn [mm] log_4(x)=y [/mm] ist, dann ist das gleichwertig mit [mm] 4^y=x. [/mm] Durch Logarithmieren (mit irgendeiner Basis a) erhält man daraus
[mm] log_a(4^y)=log_a(x)\gdw y*log_a(4)=log_a(x)\gdw y=\bruch{log_a(x)}{log_a(4)} [/mm]

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]