matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenIntegralbeweis f(x)*g(x)=0
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Integralbeweis f(x)*g(x)=0
Integralbeweis f(x)*g(x)=0 < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralbeweis f(x)*g(x)=0: Hilfe bei Beweisführung
Status: (Frage) beantwortet Status 
Datum: 23:24 So 25.04.2010
Autor: Lyrn

Aufgabe
Es seien a<b reelle Zahlen und f:[a,b] [mm] \to \IR [/mm] eine stetige Funktion, so dass
[mm] \integral_{a}^{b}{f(x)*g(x) dx} [/mm] = 0
für alle stetigen Funktionen [mm] g:[a,b]\to \IR [/mm] mit g(a)=0=g(b) gilt.
Beweisen Sie f(x)=0, [mm] x\in [/mm] [a,b] folgt.

Ich will nun hierzu einen Widerspruchsbeweis machen.
Das heißt, ich gehe davon aus, dass f(x) stetig ist im gewähltem Intervall und das ein [mm] x_{o} \in [/mm] [a,b] existiert mit [mm] f(x_{0}) \not=0. [/mm] Dies führt laut ZWS dazu, dass eine Umgebung um [mm] x_{0} [/mm] existiert, dessen Abbildung ebenfalls [mm] \not=0 [/mm] ist.
Nun ist mein Gedanke eine geeignete Funktion für g(x) zu finden, die eindeutig zeigt, dass es hierzu keine andere Möglichkeit für die Wahl von f(x) geben kann als f(x)=0, um das geforderte zu erreichen, als f(x)=0.

Meine Frage ist nun, ob mir jemand einen Tipp für g(x) geben kann. Oder auch noch Tipps für die Beweisführung. Von meinem Tutor hab ich nun den Tipp bekommen, dass es ein g(x) geben kann, welches nicht nur an den Punkten a und b =0 ist.
Vielen Dank schon mal für eure Hilfe!


        
Bezug
Integralbeweis f(x)*g(x)=0: Antwort
Status: (Antwort) fertig Status 
Datum: 07:54 Mo 26.04.2010
Autor: fred97


> Es seien a<b reelle Zahlen und f:[a,b] [mm]\to \IR[/mm] eine stetige
> Funktion, so dass
> [mm]\integral_{a}^{b}{f(x)*g(x) dx}[/mm] = 0
>  für alle stetigen Funktionen [mm]g:[a,b]\to \IR[/mm] mit
> g(a)=0=g(b) gilt.
>  Beweisen Sie f(x)=0, [mm]x\in[/mm] [a,b] folgt.
>  Ich will nun hierzu einen Widerspruchsbeweis machen.
> Das heißt, ich gehe davon aus, dass f(x) stetig ist im
> gewähltem Intervall und das ein [mm]x_{o} \in[/mm] [a,b] existiert
> mit [mm]f(x_{0}) \not=0.[/mm] Dies führt laut ZWS dazu, dass eine
> Umgebung um [mm]x_{0}[/mm] existiert, dessen Abbildung ebenfalls
> [mm]\not=0[/mm] ist.


Gute Idee ! Wir können [mm] f(x_0) [/mm] > 0 annehmen. Dann gibt es u,v [mm] \in [/mm] [a,b] mit

u<v und f(x) > 0 in [u,v]

Setze nun

               $g(x) = [mm] (x-u)^2(x-v)^2$ [/mm] für x [mm] \in [/mm] [u,v]

und

               $g(x) = 0$  für x [mm] \in [/mm] [a,b] \ [u,v]

FRED






>  Nun ist mein Gedanke eine geeignete Funktion für g(x) zu
> finden, die eindeutig zeigt, dass es hierzu keine andere
> Möglichkeit für die Wahl von f(x) geben kann als f(x)=0,
> um das geforderte zu erreichen, als f(x)=0.
>  
> Meine Frage ist nun, ob mir jemand einen Tipp für g(x)
> geben kann. Oder auch noch Tipps für die Beweisführung.
> Von meinem Tutor hab ich nun den Tipp bekommen, dass es ein
> g(x) geben kann, welches nicht nur an den Punkten a und b
> =0 ist.
> Vielen Dank schon mal für eure Hilfe!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]