matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegralbest. mit monot. Konv.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Integralbest. mit monot. Konv.
Integralbest. mit monot. Konv. < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralbest. mit monot. Konv.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Do 31.12.2020
Autor: Flowbro

Hallo Allerseits,

habe folgende Frage mitgebracht bei der ich mir beim Vorgehen noch unsicher bin:
Es sei (Ω, A, µ) = (R, [mm] $B_{1}$, [/mm] $λ_{1}$). Für n ∈ N setzen wir:
i) [mm] $f_{n}^{(1)}$:= [/mm] nχ[−1,0)
ii) [mm] $f_{n}^{(2)}$:= [/mm] nχ[0,1) + [mm] $\frac{-\infty}{n}$ [/mm] χ[−1,0]
iii) [mm] $f_{n}^{(3)}$:= cos($\frac{\pi*n}{2}$)χ[0,1] [/mm] + [mm] $\frac{1}{n^{2}}$χ[√n,n] [/mm]
iv) [mm] $f_{n}^{(4)}$:= $\frac{1}{n^{2}}$ [/mm] χ( [mm] log(n),(-e)^{n} [/mm] )
v) [mm] $f_{n}^{(5)}$:= $\frac{1}{n^{3}}$χ[n,2n]∪(−2n,−n) [/mm]

Bestimmen Sie, im Falle der Existenz, lim [mm] $f_{n}^{(k)}$ [/mm] n→ [mm] $\infty$ [/mm] und berechnen Sie
lim [mm] $\int$ $f_{n}^{(k)}$d$λ_{1}$ [/mm] sowie [mm] $\int$lim$f_{n}^{(k)}$d$λ_{1}$ [/mm]
für 1 ≤ k ≤ 5. Überprüfen Sie außerdem, ob die Voraussetzungen für die Sätze der monotonen Konvergenz respektive der dominierten Konvergenz erfüllt sind.

Leider komme ich mit der Notationsweise immer noch nicht so ganz klar und weiß nicht wie ich konkret bei der Aufgabe vorgehen soll.

Bei i) ist ja zunächst mal der lim [mm] $f_{n}^{(1)}$= $\infty$ [/mm] (n --> [mm] $\infty$), [/mm] womit der Satz der monotonen Konvergenz ja nicht gelten dürfte und das Vorziehen des lim vor das Integral nicht zulässig ist, da ansonsten unterschiedliche Ergebnisse herauskommen, oder? (also lim [mm] $\int$ $f_{n}^{(1)}$d$λ_{1}$=1 [/mm] ungleich [mm] $\int$lim$f_{n}^{(1)}$d$λ_{1}$ =$\infty$) [/mm] Oder was kann man hier noch alles aussagen?

        
Bezug
Integralbest. mit monot. Konv.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Di 05.01.2021
Autor: Gonozal_IX

Hiho,

> Leider komme ich mit der Notationsweise immer noch nicht so
> ganz klar und weiß nicht wie ich konkret bei der Aufgabe
> vorgehen soll.

Zunächst wäre jeweils eine Bestimmung von [mm] $\lim_{n\to\infty} f_n$ [/mm] mal ein guter Anfang.

>  
> Bei i) ist ja zunächst mal der lim [mm]f_{n}^{(1)}[/mm]= [mm]\infty[/mm] (n --> [mm]\infty[/mm]),

Ja, auch wenn da die Indikatorfunktion fehlt.

>  womit der Satz der monotonen Konvergenz ja nicht gelten dürfte und das Vorziehen des lim vor das Integral nicht zulässig ist

Korrekt.

> da ansonsten unterschiedliche Ergebnisse herauskommen, oder?

Das ist nicht gesagt, es ist nur nicht sichergestellt, dass sie gleich sind (können es aber trotzdem sein)

> [mm]f_{n}^{(1)}[/mm]d[mm]λ_{1}[/mm]=1

Das rechnest du mal nochmal nach.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]