matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegralberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Integralberechnung
Integralberechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung: Lösungsansätze/Lösung
Status: (Frage) beantwortet Status 
Datum: 22:36 Mo 22.06.2015
Autor: Marisu

Aufgabe
Berechne folgende Integrale.
e)

[mm] \integral_{}^{}{\bruch{e^2^x-2e^x}{e^2^x+1} dx} [/mm]

f)

[mm] \integral_{0}^{\pi/2}{\bruch{1-sinx}{x+cosx} dx} [/mm]

i)

[mm] \integral_{}^{}{\bruch{1-\wurzel(x)}{x+\wurzel(x)} dx} [/mm]

Ich habe mich bereits bei allen drei Aufgaben mit Substitution und auch mit partieller Integration versucht. Allerdings scheine ich es falsch anzugehen, da mein Term immer größer und unübersichtlicher wird. Ähnliches passiert mir auch bei der partiellen Integration.
Wäre für jeglichen Ansatz oder auch Lösungsweg sehr dankbar.

Dank im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralberechnung: Aufgabe f)
Status: (Antwort) fertig Status 
Datum: 23:09 Mo 22.06.2015
Autor: M.Rex

Hallo marisu und [willkommenmr]

>

> f)

>

> [mm]\integral_{0}^{\pi/2}{\bruch{1-sinx}{x+cosx} dx}[/mm]

Da die Ableittung von [mm] x+\cos(x), [/mm] also dem Nenner genau [mm] 1-\sin(x) [/mm] ist, und diese im Zähler steht, hast du hier ein Integral der Form [mm] \int\frac{f'(x)}{f(x)}dx [/mm]

Und es gilt: [mm] \int\frac{f'(x)}{f(x)}dx=\ln(|f(x)|) [/mm]

Marius

Bezug
        
Bezug
Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Mo 22.06.2015
Autor: HJKweseleit

e.) Setze t = [mm] e^x. [/mm]

i.) Setze t = [mm] \wurzel{x}. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]