matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral x^n y^m
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Integral x^n y^m
Integral x^n y^m < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral x^n y^m: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Mo 15.11.2010
Autor: mathiko

Aufgabe
Integriere die Funktion [mm] x^n*y^m [/mm] (n,m [mm] \el \IN) [/mm] über das Dreieck [mm] \Delta^2 [/mm] ={(x,y) [mm] \el \IR, [/mm] x,y [mm] \ge [/mm] 0, x+y [mm] \le [/mm] 1}



Hallo!

Ich habe da jetzt folgende Summe herausbekommen:
[mm] \summe_{i=0}^{m+1}\vektor{m+1\\i} \bruch{1^{n+1+i)}}{(m+1)(n+1+i)} [/mm]

Das Ergebnis soll allerdings [mm] \bruch{m!*n!}{(m+n+2)!} [/mm] sein.

In diesem Artikel steht das Gleiche.

Aber wie kommt man von der Summe zu den Fakultäten???
Könntet ihr mir hier auf die Sprünge helfen?

Viele Grüße
mathiko

        
Bezug
Integral x^n y^m: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:55 Mo 15.11.2010
Autor: max3000

Für sowas gibt es Computeralgebrasysteme, wie Mathematica oder Maple ^^.

Erstmal würde ich jedenfalls den Binomialkoeffizienten mit den Fakultäten ausdrücken.
Da kommt irgendwas im Zähler mit (m+1)! raus und dann kürzt du die m+1 mit der, die im nenner bereits steht und dann hast du schonmal das m! drin, wie in der Musterlösung. Das sollte dir als Ansatz helfen. Versuche irgendwie alles, wo i drin vorkommt zu kürzen. Sollte dir das gelingen, kannst du die Summe auch ersetzen. Da wird das ganze ja nur mit (m+1) multipliziert.

Und korrigier bitte nochmal den Tippfehler in deiner Lösung. Sonst kommts nur zu Missverständnissen.

Grüße

Max

Bezug
        
Bezug
Integral x^n y^m: Antwort
Status: (Antwort) fertig Status 
Datum: 03:06 Di 16.11.2010
Autor: Fulla

Hallo mathiko,

ich komme auf
[mm]\int_0^1\int_0^{1-x}x^ny^m\ dy\ dx=\int_0^1 x^n \left.\frac{y^{m+1}}{m+1}\right|_0^{1-x}=\frac{1}{m+1}\cdot \int_0^1 x^n \cdot \sum_{k=0}^{m+1}{m+1\choose k} (-x)^k\ dx[/mm]
[mm]=\frac{1}{m+1}\cdot \sum_{k=0}^{m+1}{m+1\choose k} (-1)^k\cdot \int_0^1 x^{n+k}\ dx=\frac{1}{m+1}\sum_{k=0}^{m+1}{m+1\choose k}\frac{(-1)^k}{n+k+1}\cdot x^{n+k+1}\Bigg|_0^1=\frac{1}{m+1}\sum_{k=0}^{m+1}{m+1\choose k}\frac{(-1)^k}{n+k+1}[/mm]

Sieht fast wie bei dir aus - bis auf den Zähler [mm](-1)^k[/mm]. []Wikipedia spuckt folgendes aus: [mm]\sum_{k=0}^{m+1}{m+1\choose k} \frac{(-1)^k}{n+k+1}=\frac{1}{(m+n+2){n+m+1\choose n}}[/mm] (*). Also

[mm]\ldots = \frac{1}{m+1}\cdot \frac{1}{(m+n+2){n+m+1\choose n}}=\frac{(m+1)!\ n!}{(m+1)(m+n+2)(m+n+1)!}=\frac{m!\ n!}{(m+n+2)!}[/mm]

Wenn du (*) z.B. durch Induktion zeigst, bist du fertig.


Lieben Gruß,
Fulla


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]