matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Integral umformen für Varianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Statistik (Anwendungen)" - Integral umformen für Varianz
Integral umformen für Varianz < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral umformen für Varianz: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:16 So 07.08.2011
Autor: energizer

Aufgabe
Wie kommt man von hier:
[mm] \sigma^2=\integral_{-\infty}^{\infty}{(x-\overline{s(t)})^2 *p(x)dx} [/mm]

nach hier:
[mm] \sigma^2=\integral_{-\infty}^{\infty}{x^2*p(x) dx}-\overline{s(t)}^2 [/mm]

für die Varianz?

Mit
[mm] \overline{s(t)}=\integral_{-\infty}^{\infty}{x*p(x) dx} [/mm]

[mm] \overline{s(t)^2}=\integral_{-\infty}^{\infty}{x^2*p(x) dx} [/mm]


Ich komme einfach nicht auf diese Form.

Zuerst einmal hab ich die Gleichung ausmultipliziert.
[mm] \sigma^2=\integral_{-\infty}^{\infty}{(x^2-2*x*\overline{s(t)}+\overline{s(t)}^2)*p(x)dx} [/mm]

ein bischen umgeformt

[mm] =\integral_{-\infty}^{\infty}{x^2*p(x)dx}-2\overline{s(t)}*\integral_{-\infty}^{\infty}{x*p(x) dx}+\integral_{-\infty}^{\infty}{\overline{s(t)}^2*p(x) dx} [/mm]
[mm] =\integral_{-\infty}^{\infty}{x^2*p(x)dx}-2*\overline{s(t)}^2+... [/mm]

mit dem letzten Integral kann ich einfach nix anfangen, das letzte Integral müsste ein [mm] \overline{s(t)}^2 [/mm] werden dann würds hinkommen.

Oder ist mein Ansatz falsch?

Wer kann mir weiterhelfen?


        
Bezug
Integral umformen für Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 07.08.2011
Autor: luis52

Moin,

beachte, dass [mm] $\overline{s(t)}^2$ [/mm] nicht von $x_$ abhaengt und somit als Konstante zu behandeln ist.

vg Luis

Bezug
                
Bezug
Integral umformen für Varianz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:53 Di 09.08.2011
Autor: energizer

Hallo Luis,

das s(t) als eine Konstante betrachtet wird wusste ich.

Wenn ich das letzte Integral betrachte und [mm] \overline{s(t)}^2 [/mm] rausziehe und die Verteilungsdichte p(x) integriere kriege ich doch die Verteilungsfunktion, da die Verteilungsdichte dee 1. Ableitung der Verteilungsfkt. ist wenn ich mich nicht irre.

Ach mom das Integral der Verteilungsdichtefkt. von [mm] -\infty [/mm] bis [mm] +\infty [/mm] ist ja 1! dann bleibt ja nur [mm] \overline{s(t)}^2 [/mm] übrig! Oh man das ich das nicht früher gesehen hab....

Vielen Dank


Bezug
                        
Bezug
Integral umformen für Varianz: Problem erledigt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 Di 09.08.2011
Autor: energizer

Damit hat sich nun alles erledigt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]