matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegral über einen Graphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Integral über einen Graphen
Integral über einen Graphen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral über einen Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 Di 24.06.2008
Autor: phoboid

Aufgabe
Berechnen Sie das Integral
[mm]\int_M \frac{x^2+y^2}{\sqrt{1+4z(x^2+y^2)}}dS[/mm]
über den Graphen [mm]M=\{(x,y,z)\in\mathbb{R}^3 \mid z=x^2y^2, x^2+y^2 \leq 1\}[/mm]

Die Musterlösung gibt als nächsten Schritt an,
dass das obige Integral zu [mm]\int_{B_1(0)} (x^2 + y^2) dx dy[/mm]
wird. Ich habe nur keinen Schimmer, wie man darauf kommt :/
Meine erste Idee war, den Transformationssatz zu verwenden, z.b.
mit [mm]\phi (x,y,z) = (x, y, x^2 y^2)[/mm],
doch leider wird die Determinante von [mm]d\phi[/mm] 0.
Ich bin für jeden Tipp dankbar!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=105709

        
Bezug
Integral über einen Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Fr 27.06.2008
Autor: Leopold_Gast

Ist

[mm]M: \ \ (x,y,z) = \varphi(u,v) \ \ \mbox{mit} \ \ (u,v) \in A[/mm]

eine stetig differenzierbare Parameterdarstellung einer Fläche [mm]M[/mm], so gilt definitionsgemäß

[mm]\int_M f(x,y,z)~\mathrm{d} \sigma = \int_A f \left( \varphi(u,v) \right) \cdot \left| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right|~\mathrm{d}(u,v)[/mm]

Man setzt dabei [mm]f[/mm] als stetig auf [mm]M[/mm] voraus, und natürlich sollte auf der rechten Seite [mm]A[/mm] ein sinnvoller Integrationsbereich sein. Die senkrechten Striche stehen für die euklidische Norm, das Kreuz für das Vektorprodukt im [mm]\mathbb{R}^3[/mm].
Fasse also einfach die rechte Seite der obigen Gleichung als Definition für die linke Seite auf.

In der konkreten Aufgabe ist [mm]A[/mm] der Einheitskreis:

[mm]A: \ \ u^2 + v^2 \leq 1[/mm]

Jedem [mm](u,v) \in A[/mm] wird nun ein Punkt

[mm](x,y,z) = \varphi(u,v) = (u,v,u^2 v^2)[/mm]

zugeordnet. Diese Punkte [mm](x,y,z)[/mm] bilden eine Fläche im [mm]\mathbb{R}^3[/mm], die sich über dem Einheitskreis [mm]x^2 + y^2 \leq 1[/mm] wellt. Das ist eben gerade der Graph der Funktion [mm](x,y) \mapsto z = x^2 y^2[/mm] (zur Erläuterung siehe unten bei (*)). Stelle dir ein Marmeladenglas vor, das mit einem Tuch oben bespannt ist, welches nicht ganz fest sitzt und daher Wellenlinien bildet.

Nun berechnet man

[mm]\frac{\partial \varphi}{\partial u} = \begin{pmatrix} 1 \\ 0 \\ 2uv^2 \end{pmatrix} \, , \ \ \frac{\partial \varphi}{\partial v} = \begin{pmatrix} 0 \\ 1 \\ 2u^2 v \end{pmatrix}[/mm]

Davon das Kreuzprodukt:

[mm]\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} = \begin{pmatrix} -2uv^2 \\ -2u^2 v \\ 1 \end{pmatrix}[/mm]

und sein Betrag:

[mm]\left| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right| = \sqrt{4u^2 v^4 + 4u^4 v^2 + 1} = \sqrt{1 + 4u^2 v^2 \left( u^2 + v^2 \right)}[/mm]

Daher gilt gemäß obiger Definition

[mm]\int_M \frac{x^2 + y^2}{\sqrt{1 + 4z \left( x^2 + y^2 \right)}}~\mathrm{d} \sigma = \int \limits_{u^2 + v^2 \leq 1} \frac{u^2 + v^2}{\sqrt{1 + 4u^2 v^2 \left( u^2 + v^2 \right)}} \cdot \sqrt{1 + 4u^2 v^2 \left( u^2 + v^2 \right)}~\mathrm{d}(u,v)[/mm]

[mm]= \int \limits_{u^2 + v^2 \leq 1} \left( u^2 + v^2 \right)~\mathrm{d}(u,v)[/mm]


(*) Wenn dich diese Variablenumbenennungen irritieren, so betrachte das Ganze eine Dimension tiefer. Nimm etwa den Graphen der Funktion [mm]x \mapsto y = x^2[/mm] mit [mm]x \in [-1,1][/mm]. Das ist ein Stück einer Parabel. Wenn du nun diese Parabel als Kurve parametrisieren sollst, kannst du ihre Punkte [mm](x,y)[/mm] so beschreiben:

[mm](x,y) = \varphi(t) = (t,t^2) \ \ \mbox{mit} \ \ t \in[-1,1][/mm]

Dieses [mm]\varphi(t)[/mm] ist eine Parameterdarstellung der Kurve. Mit einer Variablen [mm]t[/mm] parametrisiert man eben eine Kurve, mit zwei Parametern [mm]u,v[/mm] eine Fläche.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]